An expression is shown:

[tex]\frac{\left(12 \times 10^2\right)-\left(7 \times 10^2\right)}{\left(8 \times 10^5\right)}[/tex]

Which expression is equivalent?

A. [tex]6.25 \times 10^{-4}[/tex]

B. [tex]6.25 \times 10^{-1}[/tex]

C. [tex]6.25 \times 10^5[/tex]

D. [tex]6.25 \times 10^4[/tex]

Answer :

Sure, let's solve the given expression step-by-step:

The expression to simplify is:
[tex]\[
\frac{(12 \times 10^2) - (7 \times 10^2)}{8 \times 10^5}
\][/tex]

1. Calculate the numerator:

First, evaluate each term in the numerator separately:
[tex]\[
12 \times 10^2 = 1200
\][/tex]
[tex]\[
7 \times 10^2 = 700
\][/tex]

Now, subtract the second term from the first term:
[tex]\[
1200 - 700 = 500
\][/tex]

So, the numerator is [tex]\(500\)[/tex].

2. Calculate the denominator:
[tex]\[
8 \times 10^5 = 800000
\][/tex]

3. Perform the division:
[tex]\[
\frac{500}{800000}
\][/tex]

To simplify this, first divide 500 by 800000:
[tex]\[
\frac{500}{800000} = 0.000625
\][/tex]

4. Express the result in scientific notation:
[tex]\[
0.000625 = 6.25 \times 10^{-4}
\][/tex]

So, the expression simplifies to [tex]\(6.25 \times 10^{-4}\)[/tex].

Therefore, the correct answer is:
A) [tex]\(6.25 \times 10^{-4}\)[/tex]