Answer :
Let's address each part of the student's question step-by-step.
22. Probability the lorry is accepted
- The problem here involves a binomial distribution. Given that on average, one in six potatoes is rotten, the probability [tex]p[/tex] of picking a rotten potato is [tex]p = \frac{1}{6}[/tex].
- The greengrocer's sample size [tex]n[/tex] is 100 potatoes.
- The greengrocer will accept the consignment if she finds 18 or fewer rotten potatoes out of 100 sampled, which means we need to find [tex]P(X \leq 18)[/tex].
We'll use the binomial probability formula:
[tex]P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}[/tex]
Since calculating [tex]P(X \leq 18)[/tex] directly with the binomial distribution is complex, it is often practical to use a normal approximation when [tex]n[/tex] is large.
- The mean [tex]\mu[/tex] of the distribution is given by [tex]\mu = np = 100 \times \frac{1}{6} = 16.67[/tex].
- The standard deviation [tex]\sigma[/tex] is [tex]\sigma = \sqrt{np(1-p)} = \sqrt{100 \times \frac{1}{6} \times \frac{5}{6}} \approx 3.61[/tex].
Using the normal approximation, find the z-score for 18:
[tex]z = \frac{18 + 0.5 - 16.67}{3.61} \approx 0.51[/tex]
Looking up this z-score in a standard normal distribution table, we find:
[tex]P(X \leq 18) \approx 0.695[/tex]
So, there is approximately a 69.5% chance that the greengrocer will accept the consignment.
23. Probability Questions on Spoilt Game Consoles
(a) Given: 1 out of 10 consoles is spoilt. Therefore, [tex]p = \frac{1}{10}[/tex] and [tex]1-p = \frac{9}{10}[/tex].
(i) Probability more than 17 are not spoilt:
- Find the probability that 18, 19, or 20 consoles are not spoilt out of 20.
Using the binomial formula:
[tex]P(X > 17) = P(X = 18) + P(X = 19) + P(X = 20)[/tex]
Calculate each:
[tex]P(X = 18) = \binom{20}{18} \left(\frac{9}{10}\right)^{18} \left(\frac{1}{10}\right)^{2} \approx 0.2852[/tex]
[tex]P(X = 19) = \binom{20}{19} \left(\frac{9}{10}\right)^{19} \left(\frac{1}{10}\right)^{1} \approx 0.3774[/tex]
[tex]P(X = 20) = \binom{20}{20} \left(\frac{9}{10}\right)^{20} = \left(\frac{9}{10}\right)^{20} \approx 0.1216[/tex]
Summing these probabilities:
[tex]P(X > 17) \approx 0.2852 + 0.3774 + 0.1216 \approx 0.7842[/tex]
(ii) Probability at least one is spoilt:
- Easier to calculate by finding the probability none are spoilt and subtracting from 1.
[tex]P( ext{none spoilt}) = \left(\frac{9}{10}\right)^{20} \approx 0.1216[/tex]
So,
[tex]P( ext{at least one spoilt}) = 1 - P( ext{none spoilt}) \approx 1 - 0.1216 = 0.8784[/tex]
(b) Probability that 50 to 70 are spoilt out of 400:
- Here, [tex]n = 400[/tex], [tex]p = \frac{1}{10}[/tex], use normal approximation.
Calculate mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex]:
[tex]\mu = np = 400 \times \frac{1}{10} = 40[/tex]
[tex]\sigma = \sqrt{np(1-p)} = \sqrt{400 \times \frac{1}{10} \times \frac{9}{10}} \approx 6[/tex]
Find the z-scores for 50 and 70:
[tex]z_{50} = \frac{50 + 0.5 - 40}{6} \approx 1.75[/tex]
[tex]z_{70} = \frac{70 + 0.5 - 40}{6} \approx 5.08[/tex]
Using a standard normal distribution table, it is evident that [tex]P(50 < X < 70) \approx P(z_{50} < Z < z_{70}) \approx P(Z < 1.75) - P(Z < 5.08)[/tex].
Since [tex]P(Z < 5.08) \approx 1[/tex],
[tex]P(z_{50} < Z < z_{70}) \approx 0.9599[/tex]).
Thus, the approximate probability is 95.9%.