High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Multiply and simplify the product:

[tex]$(8-5i)^2$[/tex]

Select the product:

A. 39
B. 89
C. [tex]$39-80i$[/tex]
D. [tex]$89-80i$[/tex]

Answer :

To multiply and simplify the expression [tex]\((8 - 5i)^2\)[/tex], we can use the formula for squaring a binomial: [tex]\((a - b)^2 = a^2 - 2ab + b^2\)[/tex].

Here are the steps:

1. Identify the terms:
- The first term [tex]\(a\)[/tex] is 8.
- The second term [tex]\(b\)[/tex] is [tex]\(5i\)[/tex].

2. Square the first term ([tex]\(a^2\)[/tex]):
[tex]\[
8^2 = 64
\][/tex]

3. Multiply the terms and double it ([tex]\(-2ab\)[/tex]):
[tex]\[
-2 \times 8 \times 5i = -80i
\][/tex]

4. Square the second term ([tex]\(b^2\)[/tex]):
- Since [tex]\(i^2 = -1\)[/tex], we calculate [tex]\((5i)^2\)[/tex] as follows:
[tex]\[
(5i)^2 = 25i^2 = 25 \times (-1) = -25
\][/tex]

5. Combine the results:
- Add the results from steps 2, 3, and 4:
[tex]\[
64 - 80i - 25
\][/tex]

6. Simplify the expression:
- Combine the real parts: [tex]\(64 - 25 = 39\)[/tex].
- Combine the imaginary part: [tex]\(-80i\)[/tex].

So, the simplified form of the expression is:
[tex]\[
39 - 80i
\][/tex]

Therefore, the correct product is [tex]\(\boxed{39 - 80i}\)[/tex].