High School

Which expression is equivalent to [tex]\left(8x^3+8\right)-\left(x^3-2\right)[/tex]?

A) [tex]8x^3+6[/tex]
B) [tex]7x^3+10[/tex]
C) [tex]8x^3+10[/tex]
D) [tex]7x^3+6[/tex]

Answer :

To solve the expression [tex]\((8x^3 + 8) - (x^3 - 2)\)[/tex], follow these steps:

1. Distribute the negative sign across the terms in the second expression:
The expression [tex]\((8x^3 + 8) - (x^3 - 2)\)[/tex] can be rewritten by distributing the negative sign:
[tex]\[
(8x^3 + 8) - x^3 + 2
\][/tex]

2. Combine like terms:
- For the [tex]\(x^3\)[/tex] terms:
[tex]\(8x^3 - x^3 = 7x^3\)[/tex]
- For the constant terms (numbers):
[tex]\(8 + 2 = 10\)[/tex]

3. Write the final simplified expression:
After combining the like terms, you have:
[tex]\[
7x^3 + 10
\][/tex]

Thus, the expression equivalent to [tex]\((8x^3 + 8) - (x^3 - 2)\)[/tex] is [tex]\(7x^3 + 10\)[/tex].

The correct choice is B) [tex]\(7x^3 + 10\)[/tex].