High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Select the correct answer.

Which of these is the standard form of the following function?

A. [tex]f(x) = -9(x+5)^2 + 4[/tex]

B. [tex]f(x) = 9x^2 - 180x + 221[/tex]

C. [tex]f(x) = 9x^2 - 90x - 221[/tex]

D. [tex]f(x) = -9x^2 - 90x - 221[/tex]

E. [tex]f(x) = -9x^2 - 180x - 221[/tex]

Answer :

Let's find the standard form of the function [tex]\( f(x) = -9(x+5)^2 + 4 \)[/tex].

1. Expand the Squared Term:

[tex]\((x + 5)^2\)[/tex] can be expanded using the formula [tex]\((a + b)^2 = a^2 + 2ab + b^2\)[/tex].

[tex]\[
(x + 5)^2 = x^2 + 10x + 25
\][/tex]

2. Distribute the Coefficient:

Now, multiply each term in the expression by [tex]\(-9\)[/tex]:

[tex]\[
-9(x^2 + 10x + 25) = -9x^2 - 90x - 225
\][/tex]

3. Add the Constant Term:

Finally, add the constant term [tex]\(4\)[/tex] to the expression:

[tex]\[
-9x^2 - 90x - 225 + 4 = -9x^2 - 90x - 221
\][/tex]

So, the standard form of the function is:

[tex]\[ f(x) = -9x^2 - 90x - 221 \][/tex]

The correct answer is the third option:
[tex]\( f(x) = -9x^2 - 90x - 221 \)[/tex]