College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the product of the following expression?

[tex]\[

\left(-2x - 9y^2\right)(-4x - 3)

\][/tex]

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

Sure! Let's solve the problem step-by-step by expanding the given expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex].

1. Use the distributive property (FOIL method):
- Multiply each term in the first parenthesis by each term in the second parenthesis.

2. Calculate each multiplication:
- First, multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-2x)(-4x) = 8x^2
\][/tex]
- Then, multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-2x)(-3) = 6x
\][/tex]
- Next, multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-9y^2)(-4x) = 36xy^2
\][/tex]
- Finally, multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-9y^2)(-3) = 27y^2
\][/tex]

3. Combine all the terms together:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

The product is [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].

Looking at the options provided, the correct expression corresponds to:
[tex]\[ \text{Option } 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]