College

What is the product of the following expression?

[tex]\[

\left(-2x - 9y^2\right)(-4x - 3)

\][/tex]

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

Sure! Let's solve the problem step-by-step by expanding the given expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex].

1. Use the distributive property (FOIL method):
- Multiply each term in the first parenthesis by each term in the second parenthesis.

2. Calculate each multiplication:
- First, multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-2x)(-4x) = 8x^2
\][/tex]
- Then, multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-2x)(-3) = 6x
\][/tex]
- Next, multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\[
(-9y^2)(-4x) = 36xy^2
\][/tex]
- Finally, multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
(-9y^2)(-3) = 27y^2
\][/tex]

3. Combine all the terms together:
[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

The product is [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].

Looking at the options provided, the correct expression corresponds to:
[tex]\[ \text{Option } 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]