College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ [tex]\[ \begin{array}{l} P(x) = 4x^7 + 3x^4 - 4x + 4y \\ Q(x) = 3x^7 + 3 \end{array} \][/tex]

Calcular el producto [tex]\( P(x) \cdot Q(x) \)[/tex]

1) [tex]\( 16x^{14} - 9x^{12} - 16x^8 + 24x^7 - 9x^4 - 12 \)[/tex]

2) [tex]\( 9x^{14} - 12x^{11} - 12x^8 + 0x^7 - 9x^4 - 12x \)[/tex]

3) [tex]\( 16x^{14} + 9x^{12} - 12x^8 + 24x^7 - 9x^4 + 12 \)[/tex]

Answer :

To calculate the product [tex]\( P(x) \cdot Q(x) \)[/tex], we first need to expand the multiplication of the two polynomials. Here are the given polynomials:

[tex]\[ P(x) = 4x^7 + 3x^4 - 4x + 4y \][/tex]
[tex]\[ Q(x) = 3x^7 + 3 \][/tex]

Now, let's proceed with the multiplication term by term to find all the resulting terms:

1. Multiply each term in [tex]\( P(x) \)[/tex] by [tex]\( 3x^7 \)[/tex]:

[tex]\[ (4x^7) \cdot (3x^7) = 12x^{14} \][/tex]
[tex]\[ (3x^4) \cdot (3x^7) = 9x^{11} \][/tex]
[tex]\[ (-4x) \cdot (3x^7) = -12x^8 \][/tex]
[tex]\[ (4y) \cdot (3x^7) = 12x^7 y \][/tex]

2. Multiply each term in [tex]\( P(x) \)[/tex] by [tex]\( 3 \)[/tex]:

[tex]\[ (4x^7) \cdot 3 = 12x^7 \][/tex]
[tex]\[ (3x^4) \cdot 3 = 9x^4 \][/tex]
[tex]\[ (-4x) \cdot 3 = -12x \][/tex]
[tex]\[ (4y) \cdot 3 = 12y \][/tex]

Now, combine all these terms:

[tex]\[ 12x^{14} + 9x^{11} - 12x^8 + 12x^7 y + 12x^7 + 9x^4 - 12x + 12y \][/tex]

This is the expanded form of the product [tex]\( P(x) \cdot Q(x) \)[/tex].

So the correct option is not listed among the given choices. Let's re-evaluate each step closely to confirm this is correct:

[tex]\[ 4x^7 \cdot 3x^7 = 12x^{14} \][/tex]
[tex]\[ 3x^4 \cdot 3x^7 = 9x^{11} \][/tex]
[tex]\[ -4x \cdot 3x^7 = -12x^8 \][/tex]
[tex]\[ 4y \cdot 3x^7 = 12x^7 y \][/tex]

and

[tex]\[ 4x^7 \cdot 3 = 12x^7 \][/tex]
[tex]\[ 3x^4 \cdot 3 = 9x^4 \][/tex]
[tex]\[ -4x \cdot 3 = -12x \][/tex]
[tex]\[ 4y \cdot 3 = 12y \][/tex]

Reconfirming each product step yields the same polynomial:

[tex]\[ 12x^{14} + 9x^{11} - 12x^8 + 12x^7 y + 12x^7 + 9x^4 - 12x + 12y \][/tex]

Therefore, the result of the multiplication [tex]\( P(x) \cdot Q(x) \)[/tex] is:

[tex]\[ \boxed{12x^{14} + 9x^{11} - 12x^8 + 12x^7 y + 12x^7 + 9x^4 - 12x + 12y} \][/tex]