Answer :
To find the mass of the crate, you can use the formula for force, which is:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
You're given that the force [tex]\( F \)[/tex] is 200 N and the acceleration [tex]\( a \)[/tex] is [tex]\( 8 \, \text{m/s}^2 \)[/tex]. You need to solve for the mass [tex]\( m \)[/tex].
To do this, you rearrange the formula to solve for mass:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
So, the mass of the crate is 25 kg. The correct answer is 25 kg.
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
You're given that the force [tex]\( F \)[/tex] is 200 N and the acceleration [tex]\( a \)[/tex] is [tex]\( 8 \, \text{m/s}^2 \)[/tex]. You need to solve for the mass [tex]\( m \)[/tex].
To do this, you rearrange the formula to solve for mass:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
So, the mass of the crate is 25 kg. The correct answer is 25 kg.