College

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is correct and is shown below.

[tex]

\begin{array}{c}

\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\

\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\

\frac{1}{2} x+4=-\frac{1}{2} x+4

\end{array}

[/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. [tex]-1[/tex]
B. [tex]\frac{1}{2}[/tex]
C. 0
D. [tex]\frac{1}{2}[/tex]

Answer :

Let's solve the equation step by step:

We start with:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x - 4)
\][/tex]

First, expand both sides:

1. Distribute [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[
\frac{1}{2}x - \frac{1}{2} \times 14 + 11 = \frac{1}{2}x - (x - 4)
\][/tex]
This becomes:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4
\][/tex]

2. Simplify both sides:
[tex]\[
\frac{1}{2}x + 4 = \frac{1}{2}x - x + 4
\][/tex]

Now we have:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

Subtract 4 from both sides to isolate terms involving [tex]\(x\)[/tex]:

[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

To eliminate the fractions, add [tex]\(\frac{1}{2}x\)[/tex] to both sides:

[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

This simplifies to:

[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\(x\)[/tex] is [tex]\(0\)[/tex].