College

Two masses are 99.3 m apart. Mass 1 is 92.0 kg and mass 2 is 0.894 kg.

What is the gravitational force between the two masses?

[tex]\[ \overrightarrow{F} = [?] \times 10^{[?]} \, \text{N} \][/tex]

Answer :

To calculate the gravitational force between two masses, we use the formula:

[tex]\[ F = G \times \frac{m_1 \times m_2}{r^2} \][/tex]

Where:
- [tex]\( F \)[/tex] is the gravitational force.
- [tex]\( G \)[/tex] is the gravitational constant, approximately [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex].
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects.
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.

Given:
- [tex]\( m_1 = 92.0 \, \text{kg} \)[/tex]
- [tex]\( m_2 = 0.894 \, \text{kg} \)[/tex]
- [tex]\( r = 99.3 \, \text{m} \)[/tex]

We need to find the gravitational force [tex]\( F \)[/tex].

1. Substitute the values into the formula:

[tex]\[ F = 6.67430 \times 10^{-11} \times \frac{92.0 \times 0.894}{99.3^2} \][/tex]

2. Calculate the numerator:

[tex]\[ 92.0 \times 0.894 = 82.248 \][/tex]

3. Calculate the square of the distance:

[tex]\[ 99.3^2 = 9850.49 \][/tex]

4. Substitute these values into the formula:

[tex]\[ F = 6.67430 \times 10^{-11} \times \frac{82.248}{9850.49} \][/tex]

5. Calculate the division:

[tex]\[ \frac{82.248}{9850.49} \approx 0.00834951 \][/tex]

6. Multiply by the gravitational constant:

[tex]\[ F = 6.67430 \times 10^{-11} \times 0.00834951 \][/tex]

7. Calculate the final gravitational force:

[tex]\[ F \approx 5.5671455110243 \times 10^{-13} \, \text{N} \][/tex]

So, the gravitational force between the two masses is:

[tex]\[ \overrightarrow{F} = 5.5671455110243 \times 10^{-13} \, \text{N} \][/tex]

Expressed in a way that matches the requested format:

[tex]\[ \overrightarrow{F} = 0.055671455110243 \times 10^{-11} \, \text{N} \][/tex]

This representation shows that the scientific notation component for the gravitational force is:

[tex]\[ \overrightarrow{F} = 0.055671455110243 \times 10^{-11} \, \text{N} \][/tex]

This aligns with presenting the force in scientific notation, and the power of ten is [tex]\(-11\)[/tex].