Answer :
We are given that the average blue whale weighs
[tex]$$300,\!000 \text{ pounds},$$[/tex]
and the average man weighs
[tex]$$\frac{1}{1818}$$[/tex]
of the weight of a blue whale. Therefore, the average man's weight in pounds is
[tex]$$\text{Weight} = \frac{300,\!000}{1818}.$$[/tex]
### Step 1. Simplify the Fraction
Notice that both the numerator and the denominator are divisible by 6. Dividing both by 6 we get
[tex]$$300,\!000 \div 6 = 50,\!000 \quad \text{and} \quad 1818 \div 6 = 303.$$[/tex]
Thus, the weight becomes
[tex]$$\frac{300,\!000}{1818} = \frac{50,\!000}{303}.$$[/tex]
### Step 2. Express as a Mixed Number
To write [tex]$\frac{50,\!000}{303}$[/tex] as a mixed number, first determine the integer part by performing the division:
Divide 50,000 by 303. We compute
[tex]$$303 \times 165 = 303 \times (160 + 5) = 303 \times 160 + 303 \times 5.$$[/tex]
First, calculate
[tex]$$303 \times 160 = 48,\!480,$$[/tex]
then
[tex]$$303 \times 5 = 1,\!515.$$[/tex]
So,
[tex]$$303 \times 165 = 48,\!480 + 1,\!515 = 49,\!995.$$[/tex]
Since
[tex]$$50,\!000 - 49,\!995 = 5,$$[/tex]
the remainder is 5. Therefore, we can express the weight as
[tex]$$\frac{50,\!000}{303} = 165 + \frac{5}{303}.$$[/tex]
Thus, the average man weighs
[tex]$$165 \frac{5}{303} \text{ pounds}.$$[/tex]
### Final Answer
The correct answer is
[tex]$$165 \frac{5}{303} \text{ lbs}.$$[/tex]
[tex]$$300,\!000 \text{ pounds},$$[/tex]
and the average man weighs
[tex]$$\frac{1}{1818}$$[/tex]
of the weight of a blue whale. Therefore, the average man's weight in pounds is
[tex]$$\text{Weight} = \frac{300,\!000}{1818}.$$[/tex]
### Step 1. Simplify the Fraction
Notice that both the numerator and the denominator are divisible by 6. Dividing both by 6 we get
[tex]$$300,\!000 \div 6 = 50,\!000 \quad \text{and} \quad 1818 \div 6 = 303.$$[/tex]
Thus, the weight becomes
[tex]$$\frac{300,\!000}{1818} = \frac{50,\!000}{303}.$$[/tex]
### Step 2. Express as a Mixed Number
To write [tex]$\frac{50,\!000}{303}$[/tex] as a mixed number, first determine the integer part by performing the division:
Divide 50,000 by 303. We compute
[tex]$$303 \times 165 = 303 \times (160 + 5) = 303 \times 160 + 303 \times 5.$$[/tex]
First, calculate
[tex]$$303 \times 160 = 48,\!480,$$[/tex]
then
[tex]$$303 \times 5 = 1,\!515.$$[/tex]
So,
[tex]$$303 \times 165 = 48,\!480 + 1,\!515 = 49,\!995.$$[/tex]
Since
[tex]$$50,\!000 - 49,\!995 = 5,$$[/tex]
the remainder is 5. Therefore, we can express the weight as
[tex]$$\frac{50,\!000}{303} = 165 + \frac{5}{303}.$$[/tex]
Thus, the average man weighs
[tex]$$165 \frac{5}{303} \text{ pounds}.$$[/tex]
### Final Answer
The correct answer is
[tex]$$165 \frac{5}{303} \text{ lbs}.$$[/tex]