College

Suppose [tex]y[/tex] varies directly as [tex]x[/tex]. If [tex]y = 7[/tex] when [tex]x = 28[/tex], what is the value of [tex]x[/tex] when [tex]y = 3[/tex]?

A. 7
B. 9
C. 12
D. 16

Answer :

To solve the problem where [tex]\( y \)[/tex] varies directly as [tex]\( x \)[/tex], we start by understanding that the relationship can be written as:

[tex]\[ y = kx \][/tex]

where [tex]\( k \)[/tex] is a constant.

We are given that [tex]\( y = 7 \)[/tex] when [tex]\( x = 28 \)[/tex]. Substituting these values into the equation, we get:

[tex]\[ 7 = k \cdot 28 \][/tex]

To find the value of [tex]\( k \)[/tex], we solve for [tex]\( k \)[/tex]:

[tex]\[ k = \frac{7}{28} = 0.25 \][/tex]

Now, we need to find the value of [tex]\( x \)[/tex] when [tex]\( y = 3 \)[/tex] using the same relationship [tex]\( y = kx \)[/tex]. We substitute [tex]\( y = 3 \)[/tex] into the equation:

[tex]\[ 3 = 0.25 \cdot x \][/tex]

To find [tex]\( x \)[/tex], we solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{3}{0.25} = 12 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] when [tex]\( y = 3 \)[/tex] is [tex]\( 12 \)[/tex].

The correct answer is:

c. 12