College

Solve the equation using the quadratic formula.

[tex]15x^2 + 13x = 0[/tex]

A. [tex]x = -\frac{13}{15}, 0[/tex]
B. [tex]x = 0[/tex]
C. [tex]x = \frac{13}{15}, 0[/tex]
D. [tex]x = \pm \frac{13}{15}[/tex]

Answer :

To solve the equation [tex]\(15x^2 + 13x = 0\)[/tex] using the quadratic formula, we can start by identifying the coefficients. The equation is in the form [tex]\( ax^2 + bx + c = 0 \)[/tex], where:

- [tex]\( a = 15 \)[/tex]
- [tex]\( b = 13 \)[/tex]
- [tex]\( c = 0 \)[/tex]

The quadratic formula is:

[tex]\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\][/tex]

Here's how you solve the equation step-by-step:

1. Calculate the Discriminant:

The discriminant in the quadratic formula is given by:

[tex]\[
b^2 - 4ac
\][/tex]

Plugging in the values:

[tex]\[
13^2 - 4 \times 15 \times 0 = 169
\][/tex]

The discriminant is 169.

2. Calculate the Solutions:

The solutions for [tex]\( x \)[/tex] are found by:

[tex]\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\][/tex]

Substituting the known values:

[tex]\[
x = \frac{-13 \pm \sqrt{169}}{2 \times 15}
\][/tex]

Simplifying further:

[tex]\[
x = \frac{-13 \pm 13}{30}
\][/tex]

This gives us two possible solutions:

- When the "+" sign is used:

[tex]\[
x = \frac{-13 + 13}{30} = \frac{0}{30} = 0
\][/tex]

- When the "−" sign is used:

[tex]\[
x = \frac{-13 - 13}{30} = \frac{-26}{30} = -\frac{13}{15}
\][/tex]

Thus, the solutions to the equation are [tex]\( x = 0 \)[/tex] and [tex]\( x = -\frac{13}{15} \)[/tex].

The correct choice among the given options is:

a. [tex]\( x = -\frac{13}{15}, 0 \)[/tex]