Answer :
To simplify the expression [tex]\(3x^3 + 9x^6 + 2x^3 + 8 + 5x^6\)[/tex], let's follow these steps:
1. Identify like terms:
- The terms involving [tex]\(x^6\)[/tex] are [tex]\(9x^6\)[/tex] and [tex]\(5x^6\)[/tex].
- The terms involving [tex]\(x^3\)[/tex] are [tex]\(3x^3\)[/tex] and [tex]\(2x^3\)[/tex].
- The constant term is [tex]\(8\)[/tex].
2. Combine like terms:
- For the [tex]\(x^6\)[/tex] terms: [tex]\(9x^6 + 5x^6 = 14x^6\)[/tex].
- For the [tex]\(x^3\)[/tex] terms: [tex]\(3x^3 + 2x^3 = 5x^3\)[/tex].
- The constant term remains as [tex]\(8\)[/tex].
3. Write the simplified expression:
- By combining all the simplified terms, we get [tex]\(14x^6 + 5x^3 + 8\)[/tex].
Therefore, the simplified expression is [tex]\(14x^6 + 5x^3 + 8\)[/tex].
1. Identify like terms:
- The terms involving [tex]\(x^6\)[/tex] are [tex]\(9x^6\)[/tex] and [tex]\(5x^6\)[/tex].
- The terms involving [tex]\(x^3\)[/tex] are [tex]\(3x^3\)[/tex] and [tex]\(2x^3\)[/tex].
- The constant term is [tex]\(8\)[/tex].
2. Combine like terms:
- For the [tex]\(x^6\)[/tex] terms: [tex]\(9x^6 + 5x^6 = 14x^6\)[/tex].
- For the [tex]\(x^3\)[/tex] terms: [tex]\(3x^3 + 2x^3 = 5x^3\)[/tex].
- The constant term remains as [tex]\(8\)[/tex].
3. Write the simplified expression:
- By combining all the simplified terms, we get [tex]\(14x^6 + 5x^3 + 8\)[/tex].
Therefore, the simplified expression is [tex]\(14x^6 + 5x^3 + 8\)[/tex].