Answer :
To solve the equation [tex]\( |x - 4| + 6 = 17 \)[/tex], let's follow these steps:
1. Isolate the absolute value expression:
[tex]\[
|x - 4| + 6 = 17
\][/tex]
Subtract 6 from both sides to isolate the absolute value term:
[tex]\[
|x - 4| = 11
\][/tex]
2. Consider the definition of absolute value:
The absolute value [tex]\( |x - 4| = 11 \)[/tex] means that [tex]\( x - 4 \)[/tex] can be either 11 or -11. Therefore, we have two cases to consider:
- Case 1: [tex]\( x - 4 = 11 \)[/tex]
- Case 2: [tex]\( x - 4 = -11 \)[/tex]
3. Solve each case separately:
- For Case 1: [tex]\( x - 4 = 11 \)[/tex]
Add 4 to both sides:
[tex]\[
x = 11 + 4 \][/tex]
[tex]\[ x = 15
\][/tex]
- For Case 2: [tex]\( x - 4 = -11 \)[/tex]
Add 4 to both sides:
[tex]\[
x = -11 + 4 \][/tex]
[tex]\[ x = -7
\][/tex]
4. Combine the solutions:
So, the solutions to the equation [tex]\( |x - 4| + 6 = 17 \)[/tex] are:
[tex]\[
x = 15 \quad \text{and} \quad x = -7
\][/tex]
Checking the given options, we can see that the correct answer is:
A. [tex]\( x = 15 \)[/tex] and [tex]\( x = -7 \)[/tex]
1. Isolate the absolute value expression:
[tex]\[
|x - 4| + 6 = 17
\][/tex]
Subtract 6 from both sides to isolate the absolute value term:
[tex]\[
|x - 4| = 11
\][/tex]
2. Consider the definition of absolute value:
The absolute value [tex]\( |x - 4| = 11 \)[/tex] means that [tex]\( x - 4 \)[/tex] can be either 11 or -11. Therefore, we have two cases to consider:
- Case 1: [tex]\( x - 4 = 11 \)[/tex]
- Case 2: [tex]\( x - 4 = -11 \)[/tex]
3. Solve each case separately:
- For Case 1: [tex]\( x - 4 = 11 \)[/tex]
Add 4 to both sides:
[tex]\[
x = 11 + 4 \][/tex]
[tex]\[ x = 15
\][/tex]
- For Case 2: [tex]\( x - 4 = -11 \)[/tex]
Add 4 to both sides:
[tex]\[
x = -11 + 4 \][/tex]
[tex]\[ x = -7
\][/tex]
4. Combine the solutions:
So, the solutions to the equation [tex]\( |x - 4| + 6 = 17 \)[/tex] are:
[tex]\[
x = 15 \quad \text{and} \quad x = -7
\][/tex]
Checking the given options, we can see that the correct answer is:
A. [tex]\( x = 15 \)[/tex] and [tex]\( x = -7 \)[/tex]