College

Add the two polynomials:

[tex]\left(-8x^4 - 7x^3 + 7x\right) + \left(-7x^4 + 9x^3 - 9\right)[/tex]

Answer :

To add the polynomials [tex]\((-8x^4 - 7x^3 + 7x)\)[/tex] and [tex]\((-7x^4 + 9x^3 - 9)\)[/tex], we'll follow these steps:

1. Align the Polynomials by Like Terms:
Write each polynomial so that like terms are aligned. This helps ensure we add the correct terms together.

- Polynomial 1: [tex]\(-8x^4 - 7x^3 + 0x^2 + 7x + 0\)[/tex]
- Polynomial 2: [tex]\(-7x^4 + 9x^3 + 0x^2 + 0x - 9\)[/tex]

2. Add the Coefficients of Like Terms:
Combine the coefficients of matching powers of [tex]\(x\)[/tex].

- For [tex]\(x^4\)[/tex]:
[tex]\((-8) + (-7) = -15\)[/tex]

- For [tex]\(x^3\)[/tex]:
[tex]\((-7) + 9 = 2\)[/tex]

- For [tex]\(x^2\)[/tex]:
[tex]\(0 + 0 = 0\)[/tex]

- For [tex]\(x^1\)[/tex]:
[tex]\(7 + 0 = 7\)[/tex]

- Constant term:
[tex]\(0 + (-9) = -9\)[/tex]

3. Write the Resulting Polynomial:
Combine all the results to get the final polynomial:

[tex]\(-15x^4 + 2x^3 + 0x^2 + 7x - 9\)[/tex]

So, the result of adding the two polynomials is:

[tex]\(-15x^4 + 2x^3 + 7x - 9\)[/tex]