College

Solve: [tex]\sqrt{x+18}=x-2[/tex]

A. [tex]x=16[/tex]
B. [tex]x=9[/tex]
C. [tex]x=20[/tex]
D. [tex]x=7[/tex]

Answer :

We start with the equation

[tex]$$
\sqrt{x+18} = x-2.
$$[/tex]

Step 1. Square both sides to remove the square root:

[tex]$$
(\sqrt{x+18})^2 = (x-2)^2 \quad \Longrightarrow \quad x+18 = (x-2)^2.
$$[/tex]

Step 2. Expand the right-hand side:

[tex]$$
x+18 = x^2 - 4x + 4.
$$[/tex]

Step 3. Rearrange the equation into standard quadratic form by bringing all terms to one side:

[tex]$$
0 = x^2 - 4x + 4 - x - 18,
$$[/tex]

which simplifies to

[tex]$$
0 = x^2 - 5x - 14.
$$[/tex]

Step 4. Factor the quadratic equation:

[tex]$$
x^2 - 5x - 14 = (x-7)(x+2) = 0.
$$[/tex]

Thus, the possible solutions are

[tex]$$
x = 7 \quad \text{or} \quad x = -2.
$$[/tex]

Step 5. Check each solution in the original equation to ensure they are valid.

For [tex]\( x = 7 \)[/tex]:

- Left-hand side:
[tex]$$
\sqrt{7+18} = \sqrt{25} = 5.
$$[/tex]
- Right-hand side:
[tex]$$
7-2 = 5.
$$[/tex]

Since both sides are equal, [tex]\( x = 7 \)[/tex] is valid.

For [tex]\( x = -2 \)[/tex]:

- Left-hand side:
[tex]$$
\sqrt{-2+18} = \sqrt{16} = 4.
$$[/tex]
- Right-hand side:
[tex]$$
-2-2 = -4.
$$[/tex]

Since [tex]\( 4 \neq -4 \)[/tex], [tex]\( x = -2 \)[/tex] is extraneous.

Thus, the valid solution is:

[tex]$$
x = 7.
$$[/tex]

Among the given choices [tex]\( x=16 \)[/tex], [tex]\( x=9 \)[/tex], [tex]\( x=20 \)[/tex], and [tex]\( x=7 \)[/tex], the correct answer is [tex]\( x=7 \)[/tex].