Answer :
To simplify the expression [tex]\((6x^2 - 3 - 5x^3) - (4x^3 + 2x^2 - 8)\)[/tex], let's follow these steps:
1. Remove the Parentheses: Start by distributing the negative sign on the second expression into its terms:
[tex]\[
(6x^2 - 3 - 5x^3) - 4x^3 - 2x^2 + 8
\][/tex]
2. Combine Like Terms:
- The terms involving [tex]\(x^3\)[/tex]: [tex]\(-5x^3 - 4x^3 = -9x^3\)[/tex]
- The terms involving [tex]\(x^2\)[/tex]: [tex]\(6x^2 - 2x^2 = 4x^2\)[/tex]
- The constant terms: [tex]\(-3 + 8 = 5\)[/tex]
3. Write the Simplified Expression:
[tex]\[
-9x^3 + 4x^2 + 5
\][/tex]
The simplified form of the expression is [tex]\(-9x^3 + 4x^2 + 5\)[/tex].
1. Remove the Parentheses: Start by distributing the negative sign on the second expression into its terms:
[tex]\[
(6x^2 - 3 - 5x^3) - 4x^3 - 2x^2 + 8
\][/tex]
2. Combine Like Terms:
- The terms involving [tex]\(x^3\)[/tex]: [tex]\(-5x^3 - 4x^3 = -9x^3\)[/tex]
- The terms involving [tex]\(x^2\)[/tex]: [tex]\(6x^2 - 2x^2 = 4x^2\)[/tex]
- The constant terms: [tex]\(-3 + 8 = 5\)[/tex]
3. Write the Simplified Expression:
[tex]\[
-9x^3 + 4x^2 + 5
\][/tex]
The simplified form of the expression is [tex]\(-9x^3 + 4x^2 + 5\)[/tex].