College

On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$[/tex]. He plans to use the function [tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius. What does [tex][tex]$C(76.1)$[/tex][/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.

C. The amount of time it takes for a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.

D. The amount of time it takes for a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.

Answer :

To determine what [tex]\( C(76.1) \)[/tex] represents, we start by understanding the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex]. This function is used to convert a temperature from degrees Fahrenheit (°F) to degrees Celsius (°C).

1. Understanding the Parts:
- [tex]\( F \)[/tex] in the function represents the temperature in degrees Fahrenheit.
- [tex]\( C(F) \)[/tex] gives us the equivalent temperature in degrees Celsius.

2. Plugging in the Values:
- Here, [tex]\( F = 76.1 \)[/tex] because Kareem's recorded temperature is 76.1°F.
- The expression [tex]\( C(76.1) = \frac{5}{9}(76.1 - 32) \)[/tex] calculates the conversion from Fahrenheit to Celsius.

3. What C(76.1) Represents:
- When we calculate [tex]\( \frac{5}{9}(76.1 - 32) \)[/tex], the resulting value is approximately 24.5.
- This result represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.