Answer :
Sure! Let's walk through the solution step-by-step.
Kareem wants to convert a temperature of [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit to degrees Celsius using the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex].
Step 1: Identify the temperature in degrees Fahrenheit to convert.
[tex]\[ F = 76.1 \][/tex]
Step 2: Substitute [tex]\( F \)[/tex] into the given formula [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex].
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]
Step 3: Calculate the difference inside the parentheses.
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
Step 4: Multiply the result by [tex]\( \frac{5}{9} \)[/tex].
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
Step 5: Perform the multiplication.
[tex]\[ C(76.1) = 24.5 \][/tex]
So, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit converted to degrees Celsius, which is approximately [tex]\( 24.5^{\circ} \)[/tex] Celsius.
The correct choice is:
- the temperature of [tex]\( 76.1 \)[/tex] degrees Fahrenheit converted to degrees Celsius
Kareem wants to convert a temperature of [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit to degrees Celsius using the function [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex].
Step 1: Identify the temperature in degrees Fahrenheit to convert.
[tex]\[ F = 76.1 \][/tex]
Step 2: Substitute [tex]\( F \)[/tex] into the given formula [tex]\( C(F) = \frac{5}{9}(F-32) \)[/tex].
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]
Step 3: Calculate the difference inside the parentheses.
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
Step 4: Multiply the result by [tex]\( \frac{5}{9} \)[/tex].
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
Step 5: Perform the multiplication.
[tex]\[ C(76.1) = 24.5 \][/tex]
So, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit converted to degrees Celsius, which is approximately [tex]\( 24.5^{\circ} \)[/tex] Celsius.
The correct choice is:
- the temperature of [tex]\( 76.1 \)[/tex] degrees Fahrenheit converted to degrees Celsius