High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Identify the function that reflects \( f(x) = 14x^3 − 7x^2 + 6 \) across the y-axis and shifts it 6 units up.

A. \( h(x) = 14x^3 + 7x^2 + 12 \)
B. \( h(x) = −14x^3 − 7x^2 + 12 \)
C. \( h(x) = −14x^3 − 7x^2 \)
D. \( h(x) = 14x^3 − 7x^2 \)

Answer :

The correct function after reflection across the y-axis and shifts it 6 units up is,

⇒ h (x) = - 14x³ - 7x² + 12

What is Function?

A relation between a set of inputs having one output each is called a function.

We have to given that;

The function is,

⇒ f (x) = 14x³ - 7x² + 6

Now, After reflection across the y-axis we get;

⇒ f (x) = f (- x)

⇒ f (-x) = 14 (-x)³ - 7 (-x)² + 6

⇒ f (-x) = - 14x³ - 7x² + 6

And, After shifts it 6 units up, we get;

⇒ f (x) = f (x) + 6

Hence, We get the value of function is,

⇒ h (x) = - 14x³ - 7x² + 6 + 6

⇒ h (x) = - 14x³ - 7x² + 12

Learn more about the function visit:

https://brainly.com/question/28793267

#SPJ2

Answer: there's no answer, the correct answer is f(x) = -14x3 + 7x2

Step-by-step explanation:

1. f(x) = 14x3 − 7x2 + 6

2. reflection over y-axis : f(x) = -14x3 + 7x2 - 6

3. shift 6 units up : f(x) = -14x3 + 7x2 - 6 + 6

4. f(x) = -14x3 + 7x2