Answer :
To find [tex]\( f(3) \)[/tex] for the function [tex]\( f(x) = -5x^2 - x + 20 \)[/tex], we can follow these steps:
1. Substitute 3 for [tex]\( x \)[/tex] in the function:
Start by replacing [tex]\( x \)[/tex] with 3 in the expression [tex]\( f(x) = -5x^2 - x + 20 \)[/tex].
2. Calculate each part of the expression:
- Compute [tex]\((-5)(3)^2\)[/tex]:
[tex]\[ (3)^2 = 9 \][/tex]
[tex]\[ -5 \times 9 = -45 \][/tex]
- Compute [tex]\(-3\)[/tex] (this comes from [tex]\(-1 \times 3\)[/tex]).
- Combine [tex]\(-45\)[/tex] and [tex]\(-3\)[/tex]:
[tex]\[ -45 + (-3) = -48 \][/tex]
- Add 20 to [tex]\(-48\)[/tex] to finish the calculation:
[tex]\[ -48 + 20 = -28 \][/tex]
3. Conclusion:
Therefore, [tex]\( f(3) = -28 \)[/tex].
The correct answer is [tex]\(-28\)[/tex].
1. Substitute 3 for [tex]\( x \)[/tex] in the function:
Start by replacing [tex]\( x \)[/tex] with 3 in the expression [tex]\( f(x) = -5x^2 - x + 20 \)[/tex].
2. Calculate each part of the expression:
- Compute [tex]\((-5)(3)^2\)[/tex]:
[tex]\[ (3)^2 = 9 \][/tex]
[tex]\[ -5 \times 9 = -45 \][/tex]
- Compute [tex]\(-3\)[/tex] (this comes from [tex]\(-1 \times 3\)[/tex]).
- Combine [tex]\(-45\)[/tex] and [tex]\(-3\)[/tex]:
[tex]\[ -45 + (-3) = -48 \][/tex]
- Add 20 to [tex]\(-48\)[/tex] to finish the calculation:
[tex]\[ -48 + 20 = -28 \][/tex]
3. Conclusion:
Therefore, [tex]\( f(3) = -28 \)[/tex].
The correct answer is [tex]\(-28\)[/tex].