Answer :
To solve the problem of finding the value of [tex]\( c \)[/tex], let's break it down step-by-step using the given formula and values.
The formula we have is:
[tex]\[ f = c \cdot d^3 \][/tex]
We are given:
- [tex]\( f = 450 \)[/tex]
- [tex]\( d = 10 \)[/tex]
We need to find the value of [tex]\( c \)[/tex].
Step 1: Substitute the known values into the equation.
[tex]\[ 450 = c \cdot 10^3 \][/tex]
Step 2: Calculate [tex]\( 10^3 \)[/tex].
[tex]\[ 10^3 = 10 \times 10 \times 10 = 1000 \][/tex]
Step 3: Substitute [tex]\( 10^3 \)[/tex] with 1000 in the equation.
[tex]\[ 450 = c \cdot 1000 \][/tex]
Step 4: Solve for [tex]\( c \)[/tex] by dividing both sides of the equation by 1000.
[tex]\[ c = \frac{450}{1000} \][/tex]
Step 5: Simplify the fraction.
[tex]\[ c = 0.45 \][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].
The formula we have is:
[tex]\[ f = c \cdot d^3 \][/tex]
We are given:
- [tex]\( f = 450 \)[/tex]
- [tex]\( d = 10 \)[/tex]
We need to find the value of [tex]\( c \)[/tex].
Step 1: Substitute the known values into the equation.
[tex]\[ 450 = c \cdot 10^3 \][/tex]
Step 2: Calculate [tex]\( 10^3 \)[/tex].
[tex]\[ 10^3 = 10 \times 10 \times 10 = 1000 \][/tex]
Step 3: Substitute [tex]\( 10^3 \)[/tex] with 1000 in the equation.
[tex]\[ 450 = c \cdot 1000 \][/tex]
Step 4: Solve for [tex]\( c \)[/tex] by dividing both sides of the equation by 1000.
[tex]\[ c = \frac{450}{1000} \][/tex]
Step 5: Simplify the fraction.
[tex]\[ c = 0.45 \][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].