High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find a cubic function with the given zeros.


[tex]\sqrt{5}, - \sqrt{5} , -7[/tex]


f(x) = [tex]x^{3} - 7x^{2} - 5x - 35[/tex]

f(x) = [tex]x^{3} + 7x^{2} - 5x + 35[/tex]

f(x) = [tex]x^{3} + 7x^{2} - 5x - 35[/tex]

f(x) = [tex]x^{3} + 7x^{2} + 5x - 35[/tex]

Answer :

Answer:

  • C. f(x) = x³ + 7x² - 5x - 35

Step-by-step explanation:

Given zeros of cubic function:

  • √5, -√5 and -7

The cubic function has standard form:

  • f(x) = ax³ + bx² + cx + d

Without multiplying lets find the value of a, b, c and d:

  • a = 1 as all the answer options

Sum of the roots

  • -b/a = √5 - √5 - 7 = -7, so b = 7

Sum of the products of the roots (taken two at a time)

  • c/a = √5*(-√5) + √5*(-7) + (-√5)(-7) = - 5, so c = -5

Product of the roots

  • - d/a = √5*(-√5)*(-7) = 35, so d = -35

So the cubic function is:

  • f(x) = x³ + 7x² - 5x - 35

Correct option is C

Answer:

The third: f(x) = x³ + 7x² - 5x - 35

Step-by-step explanation:

[tex]f(x)=(x-\sqrt5)(x+\sqrt5)(x+7)\\\\f(x)=(x^2+x\sqrt5-x\sqrt5-(\sqrt5)^2)(x+7)\\\\f(x)=(x^2-5)(x+7)\\\\f(x)=x^3+7x^2-5x-35[/tex]