Answer :
Sure! To find the force of gravity acting on an object, we use the formula:
[tex]\[ F = m \times g \][/tex]
Where:
- [tex]\( F \)[/tex] is the force of gravity,
- [tex]\( m \)[/tex] is the mass of the object,
- [tex]\( g \)[/tex] is the acceleration due to gravity on Earth, which is approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
For the given problem:
1. The mass ([tex]\( m \)[/tex]) of the object is [tex]\( 20 \, \text{kg} \)[/tex].
2. The acceleration due to gravity ([tex]\( g \)[/tex]) is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
Now, plug these values into the formula:
[tex]\[ F = 20 \, \text{kg} \times 9.8 \, \text{m/s}^2 \][/tex]
[tex]\[ F = 196 \, \text{N} \][/tex]
So, the force of gravity acting on the object on Earth is [tex]\( 196 \, \text{N} \)[/tex].
Therefore, the correct answer is B. 196 N.
[tex]\[ F = m \times g \][/tex]
Where:
- [tex]\( F \)[/tex] is the force of gravity,
- [tex]\( m \)[/tex] is the mass of the object,
- [tex]\( g \)[/tex] is the acceleration due to gravity on Earth, which is approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
For the given problem:
1. The mass ([tex]\( m \)[/tex]) of the object is [tex]\( 20 \, \text{kg} \)[/tex].
2. The acceleration due to gravity ([tex]\( g \)[/tex]) is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
Now, plug these values into the formula:
[tex]\[ F = 20 \, \text{kg} \times 9.8 \, \text{m/s}^2 \][/tex]
[tex]\[ F = 196 \, \text{N} \][/tex]
So, the force of gravity acting on the object on Earth is [tex]\( 196 \, \text{N} \)[/tex].
Therefore, the correct answer is B. 196 N.