Answer :
Sure! Let's simplify the expression step by step.
We have the expression:
[tex]\[ 6(5r - 11) - (5 - r) \][/tex]
1. Distribute the 6 into the first parentheses:
[tex]\[
6 \times 5r - 6 \times 11 = 30r - 66
\][/tex]
2. Distribute the negative sign into the second parentheses:
[tex]\[
-(5 - r) = -5 + r
\][/tex]
3. Combine the simplified parts:
[tex]\[
(30r - 66) + (-5 + r)
\][/tex]
This becomes:
[tex]\[
30r - 66 - 5 + r
\][/tex]
4. Combine like terms:
- The terms with [tex]\(r\)[/tex]: [tex]\(30r + r = 31r\)[/tex]
- The constant terms: [tex]\(-66 - 5 = -71\)[/tex]
5. Write the final simplified expression:
[tex]\[
31r - 71
\][/tex]
So, the simplified expression is [tex]\(31r - 71\)[/tex].
The correct answer is:
(B) [tex]\(31r - 71\)[/tex]
We have the expression:
[tex]\[ 6(5r - 11) - (5 - r) \][/tex]
1. Distribute the 6 into the first parentheses:
[tex]\[
6 \times 5r - 6 \times 11 = 30r - 66
\][/tex]
2. Distribute the negative sign into the second parentheses:
[tex]\[
-(5 - r) = -5 + r
\][/tex]
3. Combine the simplified parts:
[tex]\[
(30r - 66) + (-5 + r)
\][/tex]
This becomes:
[tex]\[
30r - 66 - 5 + r
\][/tex]
4. Combine like terms:
- The terms with [tex]\(r\)[/tex]: [tex]\(30r + r = 31r\)[/tex]
- The constant terms: [tex]\(-66 - 5 = -71\)[/tex]
5. Write the final simplified expression:
[tex]\[
31r - 71
\][/tex]
So, the simplified expression is [tex]\(31r - 71\)[/tex].
The correct answer is:
(B) [tex]\(31r - 71\)[/tex]