Evaluate the following expressions:

(a) [tex]\log_2 2^{11} =[/tex] [tex]\square[/tex]

(b) [tex]\log_3 243 =[/tex] [tex]\square[/tex]

(c) [tex]\log_5 3125 =[/tex] [tex]\square[/tex]

(d) [tex]\log_6 6^7 =[/tex] [tex]\square[/tex]

Answer :

Sure! Let's evaluate each of these logarithmic expressions step-by-step:

(a) [tex]\(\log_2 2^{11}\)[/tex]

To evaluate this expression, we can use the logarithmic identity:

[tex]\[
\log_b (b^x) = x
\][/tex]

Here, the base [tex]\(b\)[/tex] is 2, and the exponent [tex]\(x\)[/tex] is 11. So, [tex]\(\log_2 2^{11} = 11\)[/tex].

(b) [tex]\(\log_3 243\)[/tex]

First, we need to express 243 as a power of 3. Since [tex]\(3^5 = 243\)[/tex], we apply the property of logarithms:

[tex]\[
\log_b (b^x) = x
\][/tex]

Substituting the values, [tex]\(\log_3 243 = 5\)[/tex].

(c) [tex]\(\log_5 3125\)[/tex]

Similarly, we need to express 3125 as a power of 5. Since [tex]\(5^5 = 3125\)[/tex], we can use the same logarithmic property:

[tex]\[
\log_b (b^x) = x
\][/tex]

So, [tex]\(\log_5 3125 = 5\)[/tex].

(d) [tex]\(\log_6 6^7\)[/tex]

Using the property:

[tex]\[
\log_b (b^x) = x
\][/tex]

Here, the base [tex]\(b\)[/tex] is 6, and the exponent [tex]\(x\)[/tex] is 7. Thus, [tex]\(\log_6 6^7 = 7\)[/tex].

So, the evaluated expressions are:
- (a) [tex]\(\log_2 2^{11} = 11\)[/tex]
- (b) [tex]\(\log_3 243 = 5\)[/tex]
- (c) [tex]\(\log_5 3125 = 5\)[/tex]
- (d) [tex]\(\log_6 6^7 = 7\)[/tex]