College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify [tex]\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}[/tex] completely.

A. [tex]25x^3[/tex]
B. [tex]25x[/tex]
C. [tex]5x^3[/tex]
D. [tex]5x[/tex]

Answer :

To simplify the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex], we'll use properties of cube roots and exponents. Let's go through the steps:

1. Recognize the Cube Root Property:
- The property of cube roots states that [tex]\(\sqrt[3]{a} \cdot \sqrt[3]{b} = \sqrt[3]{a \cdot b}\)[/tex].

2. Multiply Underneath the Cube Roots:
- Using the cube root property, combine the expressions:
[tex]\[
\sqrt[3]{5x} \cdot \sqrt[3]{25x^2} = \sqrt[3]{(5x) \cdot (25x^2)}
\][/tex]

3. Simplify Inside the Cube Root:
- Multiply the numbers and the variables separately:
- For numbers: [tex]\(5 \times 25 = 125\)[/tex]
- For variables: [tex]\(x \times x^2 = x^{1+2} = x^3\)[/tex]

- So, the expression inside the cube root becomes:
[tex]\[
\sqrt[3]{125x^3}
\][/tex]

4. Simplify the Cube Root:
- Break it down:
- The cube root of [tex]\(125\)[/tex] is [tex]\(5\)[/tex] because [tex]\(5^3 = 125\)[/tex].
- The cube root of [tex]\(x^3\)[/tex] is [tex]\(x\)[/tex] because [tex]\((x^3)^{1/3} = x^{3/3} = x\)[/tex].

5. Combine the Simplified Parts:
- Combine the simplified parts from the cube root:
[tex]\[
5 \cdot x = 5x
\][/tex]

So, the simplified expression is [tex]\(5x\)[/tex].

The correct answer is [tex]\(\boxed{5x}\)[/tex].