High School

Choose the correct simplification of [tex]$9x^2(4x + 2x^2 − 1)$[/tex].

A. [tex]$18x^4 + 36x^3 − 9x^2$[/tex]
B. [tex]$18x^4 − 36x^3 + 9x^2$[/tex]
C. [tex]$36x^4 + 18x^3 − 9x^2$[/tex]
D. [tex]$36x^4 − 13x^3 + 9x^2$[/tex]

Answer :

Distribute 9x^2 to all terms in parentheses:

[tex]9x^{2} \times 4x = 36x^{3}[/tex]
[tex]9x^{2} \times 2x^{2} = 18x^{4}[/tex]
[tex]9x^{2} \times -1 = -9x^{2} [/tex]

[tex]18x^4 + 36x^3 - 9x^2[/tex]

The answer is 18x^4 + 36x^3 − 9x^2.

Final answer:

The simplification of the expression [tex]9x^2(4x + 2x^2 - 1) is 18x^4 + 36x^3 - 9x^2[/tex], is achieved by distributing and combining like terms.

Explanation:

To simplify the expression [tex]9x^2(4x + 2x^2 - 1)[/tex], first distribute the [tex]9x^2[/tex] across the terms inside the parentheses:

[tex]9x^2(4x) + 9x^2(2x^2) - 9x^2(1)[/tex]

This yields:

[tex]36x^3 + 18x^4 - 9x^2[/tex]

Now, combine like terms if possible. In this case, we have [tex]36x^3, 18x^4,[/tex] and [tex]-9x^2[/tex]. There are no like terms to combine further.

So, the simplified expression is:

[tex]18x^4 + 36x^3 - 9x^2[/tex]

The correct simplification of [tex]9x^2(4x + 2x^2 - 1)[/tex] involves distributing the [tex]9x^2[/tex] across the terms in the parenthesis. Here's the step-by-step simplification:

First, multiply[tex]9x^2[/tex] by 4x to get 36x3.

Next, multiply [tex]9x^2[/tex] by 2x2 to get 18x4.

Finally, multiply[tex]9x^2[/tex] by -1 to get -9x2.

Combining these results, the simplified expression is [tex]18x^4 + 36x^3 - 9x^2.[/tex]