Answer :
Distribute 9x^2 to all terms in parentheses:
[tex]9x^{2} \times 4x = 36x^{3}[/tex]
[tex]9x^{2} \times 2x^{2} = 18x^{4}[/tex]
[tex]9x^{2} \times -1 = -9x^{2} [/tex]
[tex]18x^4 + 36x^3 - 9x^2[/tex]
The answer is 18x^4 + 36x^3 − 9x^2.
[tex]9x^{2} \times 4x = 36x^{3}[/tex]
[tex]9x^{2} \times 2x^{2} = 18x^{4}[/tex]
[tex]9x^{2} \times -1 = -9x^{2} [/tex]
[tex]18x^4 + 36x^3 - 9x^2[/tex]
The answer is 18x^4 + 36x^3 − 9x^2.
Final answer:
The simplification of the expression [tex]9x^2(4x + 2x^2 - 1) is 18x^4 + 36x^3 - 9x^2[/tex], is achieved by distributing and combining like terms.
Explanation:
To simplify the expression [tex]9x^2(4x + 2x^2 - 1)[/tex], first distribute the [tex]9x^2[/tex] across the terms inside the parentheses:
[tex]9x^2(4x) + 9x^2(2x^2) - 9x^2(1)[/tex]
This yields:
[tex]36x^3 + 18x^4 - 9x^2[/tex]
Now, combine like terms if possible. In this case, we have [tex]36x^3, 18x^4,[/tex] and [tex]-9x^2[/tex]. There are no like terms to combine further.
So, the simplified expression is:
[tex]18x^4 + 36x^3 - 9x^2[/tex]
The correct simplification of [tex]9x^2(4x + 2x^2 - 1)[/tex] involves distributing the [tex]9x^2[/tex] across the terms in the parenthesis. Here's the step-by-step simplification:
First, multiply[tex]9x^2[/tex] by 4x to get 36x3.
Next, multiply [tex]9x^2[/tex] by 2x2 to get 18x4.
Finally, multiply[tex]9x^2[/tex] by -1 to get -9x2.
Combining these results, the simplified expression is [tex]18x^4 + 36x^3 - 9x^2.[/tex]