Answer :
Let's simplify each of the given expressions using the properties of expressions, primarily focusing on combining like terms:
2.2.1.
The expression: [tex]2t + 9 + 4t - 5[/tex]
First, identify the like terms:
- Combine the terms with [tex]t[/tex]: [tex]2t + 4t = 6t[/tex]
- Combine the constant terms: [tex]9 - 5 = 4[/tex]
So, the simplified expression is: [tex]6t + 4[/tex]
2.2.2.
The expression: [tex]6p^3 + 4p^2 - p + 4p^2 + p - 5p^3[/tex]
First, identify and combine the like terms:
- Combine the [tex]p^3[/tex] terms: [tex]6p^3 - 5p^3 = 1p^3[/tex] or [tex]p^3[/tex]
- Combine the [tex]p^2[/tex] terms: [tex]4p^2 + 4p^2 = 8p^2[/tex]
- Combine the [tex]p[/tex] terms: [tex]-p + p = 0[/tex]
Thus, the simplified expression is: [tex]p^3 + 8p^2[/tex]
2.2.3.
The expression: [tex]20k + 14f + k - 17f + 4[/tex]
Identify and combine like terms:
- Combine the [tex]k[/tex] terms: [tex]20k + k = 21k[/tex]
- Combine the [tex]f[/tex] terms: [tex]14f - 17f = -3f[/tex]
- The constant term remains as [tex]4[/tex]
So, the simplified expression is: [tex]21k - 3f + 4[/tex]
In each case, we used the properties of expressions to combine like terms, resulting in a simplified version of the original expression.