Answer :
Sure! Let's solve the equation step-by-step.
We are given the equation:
[tex]\[ 4x - 6y = 16 \][/tex]
And we know that:
[tex]\[ x = 7 \][/tex]
First, substitute [tex]\( x = 7 \)[/tex] into the equation:
[tex]\[ 4(7) - 6y = 16 \][/tex]
Now, calculate [tex]\( 4 \times 7 \)[/tex]:
[tex]\[ 28 - 6y = 16 \][/tex]
Next, we need to isolate [tex]\( y \)[/tex]. Subtract 28 from both sides of the equation:
[tex]\[ -6y = 16 - 28 \][/tex]
This simplifies to:
[tex]\[ -6y = -12 \][/tex]
Finally, divide both sides by -6 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{-12}{-6} \][/tex]
[tex]\[ y = 2 \][/tex]
So, the value of [tex]\( y \)[/tex] is:
[tex]\[ y = 2 \][/tex]
We are given the equation:
[tex]\[ 4x - 6y = 16 \][/tex]
And we know that:
[tex]\[ x = 7 \][/tex]
First, substitute [tex]\( x = 7 \)[/tex] into the equation:
[tex]\[ 4(7) - 6y = 16 \][/tex]
Now, calculate [tex]\( 4 \times 7 \)[/tex]:
[tex]\[ 28 - 6y = 16 \][/tex]
Next, we need to isolate [tex]\( y \)[/tex]. Subtract 28 from both sides of the equation:
[tex]\[ -6y = 16 - 28 \][/tex]
This simplifies to:
[tex]\[ -6y = -12 \][/tex]
Finally, divide both sides by -6 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{-12}{-6} \][/tex]
[tex]\[ y = 2 \][/tex]
So, the value of [tex]\( y \)[/tex] is:
[tex]\[ y = 2 \][/tex]