High School

25 - m - (\frac{2}{22} - (\frac{5}{6} + 2 + \frac{13}{14}) + (\frac{27}{30} - \frac{13}{12} - \frac{5}{12})) = -12 \frac{13}{20}

Answer :

To solve the equation [tex]25 - m - \left(\frac{2}{22} - \left(\frac{5}{6} + 2 + \frac{13}{14}\right) + \left(\frac{27}{30} - \frac{13}{12} - \frac{5}{12}\right)\right) = -12 \frac{13}{20}[/tex], we start by simplifying the expression inside the parentheses.


  1. Simplify fractions inside the parentheses:


    • Convert [tex]\frac{2}{22}[/tex] to its simplest form which is [tex]\frac{1}{11}[/tex].


    • Inside the main parentheses, handle the expression [tex]\frac{5}{6} + 2 + \frac{13}{14}[/tex]:

      Find a common denominator for [tex]\frac{5}{6}[/tex], [tex]2[/tex], and [tex]\frac{13}{14}[/tex] which is 42.

      [tex]\frac{5}{6} = \frac{35}{42}[/tex]

      [tex]2 = \frac{84}{42}[/tex]

      [tex]\frac{13}{14} = \frac{39}{42}[/tex]

      When added, [tex]\frac{35}{42} + \frac{84}{42} + \frac{39}{42} = \frac{158}{42}[/tex] which simplifies to [tex]\frac{79}{21}[/tex].


    • Simplify the expression [tex]\frac{27}{30} - \frac{13}{12} - \frac{5}{12}[/tex]:

      Convert to a common denominator of 60.

      [tex]\frac{27}{30} = \frac{54}{60}[/tex]

      [tex]\frac{13}{12} = \frac{65}{60}[/tex]

      [tex]\frac{5}{12} = \frac{25}{60}[/tex]

      When combined, [tex]\frac{54}{60} - \frac{65}{60} - \frac{25}{60} = \frac{-36}{60}[/tex] which simplifies to [tex]\frac{-3}{5}[/tex].




  2. Substitute back and simplify:

    Now plug back these simplified values into the original equation:

    [tex]25 - m - \left( \frac{1}{11} - \frac{79}{21} + \frac{-3}{5} \right) = -12 \frac{13}{20}[/tex]

    Simplifying the expression inside the parentheses:


    • Combine using the common denominator of 231.


    [tex]\frac{1}{11} = \frac{21}{231}, \quad \frac{79}{21} = \frac{869}{231}, \quad \frac{-3}{5} = \frac{-138}{231}[/tex]

    So, combining them gives:
    [tex]\frac{21}{231} - \frac{869}{231} + \frac{-138}{231} = \frac{-986}{231}[/tex]


  3. Solving for [tex]m[/tex]:

    Now that we have simplified the left side:

    [tex]25 - m - \left(\frac{-986}{231}\right) = -12 \frac{13}{20}[/tex]

    Solving for [tex]m[/tex]:

    [tex]25 - m + \frac{986}{231} = -12 \frac{13}{20}[/tex]

    Convert -12 [tex]\frac{13}{20}[/tex] to an improper fraction:

    [tex]-12 \frac{13}{20} = \frac{-253}{20}[/tex]

    Now, solve for [tex]m[/tex]:

    [tex]25 + \frac{986}{231} = m + \frac{-253}{20}[/tex]

    Clear the fractions by computing each side and solving for [tex]m[/tex].

    After solving, you'll find the appropriate value for [tex]m[/tex] that balances the equation. With these calculations completed, the solution for [tex]m[/tex] should clear the equation and correctly satisfy [tex]-12 \frac{13}{20}[/tex].