College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which polynomial lists the powers in descending order?

A. [tex]x^8 + 10x^2 + 8x^3 + 3x^6 - 2[/tex]

B. [tex]3x^6 + 10x^2 + x^8 + 8x^3 - 2[/tex]

C. [tex]10x^2 + 8x^3 + x^8 - 2 + 3x^6[/tex]

D. [tex]x^8 + 3x^6 + 8x^3 + 10x^2 - 2[/tex]

Answer :

To determine which polynomial lists the powers in descending order, we need to organize the terms from the highest power of [tex]\( x \)[/tex] to the lowest power.

Let's look at each option individually:

Option A: [tex]\( x^8 + 10x^2 + 8x^3 + 3x^6 - 2 \)[/tex]

- Powers of [tex]\( x \)[/tex]: [tex]\( 8, 2, 3, 6, 0 \)[/tex]
- In order: [tex]\( x^8, 3x^6, 8x^3, 10x^2, -2 \)[/tex]

Option B: [tex]\( 3x^6 + 10x^2 + x^8 + 8x^3 - 2 \)[/tex]

- Powers of [tex]\( x \)[/tex]: [tex]\( 6, 2, 8, 3, 0 \)[/tex]
- In order: [tex]\( x^8, 3x^6, 8x^3, 10x^2, -2 \)[/tex]

Option C: [tex]\( 10x^2 + 8x^3 + x^8 - 2 + 3x^6 \)[/tex]

- Powers of [tex]\( x \)[/tex]: [tex]\( 2, 3, 8, 0, 6 \)[/tex]
- In order: [tex]\( x^8, 3x^6, 8x^3, 10x^2, -2 \)[/tex]

Option D: [tex]\( x^8 + 3x^6 + 8x^3 + 10x^2 - 2 \)[/tex]

- Powers of [tex]\( x \)[/tex]: [tex]\( 8, 6, 3, 2, 0 \)[/tex]
- Already in order: [tex]\( x^8, 3x^6, 8x^3, 10x^2, -2 \)[/tex]

Option D lists the terms in descending order of the powers: [tex]\( x^8, x^6, x^3, x^2, \)[/tex] and the constant term [tex]\(-2\)[/tex]. Therefore, the correct answer is D.