Answer :
We start with the given expression:
$$
6(5r-11)-(5-r)
$$
**Step 1. Distribute the multiplication:**
Multiply out the first term:
$$
6(5r-11) = 6 \cdot 5r - 6 \cdot 11 = 30r - 66.
$$
**Step 2. Subtract the second term:**
The expression now becomes
$$
30r - 66 - (5 - r).
$$
When subtracting a quantity in parentheses, distribute the negative sign:
$$
30r - 66 - 5 + r.
$$
**Step 3. Combine like terms:**
Combine the $r$ terms and the constants separately:
- The $r$ terms: $30r + r = 31r$.
- The constant terms: $-66 - 5 = -71$.
Thus, the simplified expression is:
$$
31r - 71.
$$
Therefore, the equivalent expression is:
$$
\boxed{31r - 71}
$$
This corresponds to option (B).
$$
6(5r-11)-(5-r)
$$
**Step 1. Distribute the multiplication:**
Multiply out the first term:
$$
6(5r-11) = 6 \cdot 5r - 6 \cdot 11 = 30r - 66.
$$
**Step 2. Subtract the second term:**
The expression now becomes
$$
30r - 66 - (5 - r).
$$
When subtracting a quantity in parentheses, distribute the negative sign:
$$
30r - 66 - 5 + r.
$$
**Step 3. Combine like terms:**
Combine the $r$ terms and the constants separately:
- The $r$ terms: $30r + r = 31r$.
- The constant terms: $-66 - 5 = -71$.
Thus, the simplified expression is:
$$
31r - 71.
$$
Therefore, the equivalent expression is:
$$
\boxed{31r - 71}
$$
This corresponds to option (B).