Answer :
To determine which expressions are equivalent to [tex]\(-9\left(\frac{2}{3}x + 1\right)\)[/tex], we perform the steps below:
1. Distribute [tex]\(-9\)[/tex] across the terms in the parentheses:
- Multiply [tex]\(-9\)[/tex] by [tex]\(\frac{2}{3}x\)[/tex]:
[tex]\[
-9 \cdot \frac{2}{3}x = -6x
\][/tex]
- Multiply [tex]\(-9\)[/tex] by [tex]\(1\)[/tex]:
[tex]\[
-9 \cdot 1 = -9
\][/tex]
2. Combine the distributed terms:
The expression becomes [tex]\(-6x - 9\)[/tex].
3. Check each given expression for equivalence to [tex]\(-6x - 9\)[/tex]:
- Expression 1: [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex]
This simplifies to [tex]\(-6x + 9\)[/tex]. It does not match [tex]\(-6x - 9\)[/tex].
- Expression 2: [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
This simplifies to [tex]\(-6x - 9\)[/tex]. It matches [tex]\(-6x - 9\)[/tex].
- Expression 3: [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex]
This simplifies to [tex]\(-6x + 1\)[/tex]. It does not match [tex]\(-6x - 9\)[/tex].
- Expression 4: [tex]\(-6x + 1\)[/tex]
This is the expression as given. It does not match [tex]\(-6x - 9\)[/tex].
- Expression 5: [tex]\(-6x + 9\)[/tex]
This does not match [tex]\(-6x - 9\)[/tex].
- Expression 6: [tex]\(-6x - 9\)[/tex]
This matches the simplified expression [tex]\(-6x - 9\)[/tex].
4. Conclusion:
The expressions that are equivalent to [tex]\(-9\left(\frac{2}{3}x + 1\right)\)[/tex] are:
- [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]
1. Distribute [tex]\(-9\)[/tex] across the terms in the parentheses:
- Multiply [tex]\(-9\)[/tex] by [tex]\(\frac{2}{3}x\)[/tex]:
[tex]\[
-9 \cdot \frac{2}{3}x = -6x
\][/tex]
- Multiply [tex]\(-9\)[/tex] by [tex]\(1\)[/tex]:
[tex]\[
-9 \cdot 1 = -9
\][/tex]
2. Combine the distributed terms:
The expression becomes [tex]\(-6x - 9\)[/tex].
3. Check each given expression for equivalence to [tex]\(-6x - 9\)[/tex]:
- Expression 1: [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex]
This simplifies to [tex]\(-6x + 9\)[/tex]. It does not match [tex]\(-6x - 9\)[/tex].
- Expression 2: [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
This simplifies to [tex]\(-6x - 9\)[/tex]. It matches [tex]\(-6x - 9\)[/tex].
- Expression 3: [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex]
This simplifies to [tex]\(-6x + 1\)[/tex]. It does not match [tex]\(-6x - 9\)[/tex].
- Expression 4: [tex]\(-6x + 1\)[/tex]
This is the expression as given. It does not match [tex]\(-6x - 9\)[/tex].
- Expression 5: [tex]\(-6x + 9\)[/tex]
This does not match [tex]\(-6x - 9\)[/tex].
- Expression 6: [tex]\(-6x - 9\)[/tex]
This matches the simplified expression [tex]\(-6x - 9\)[/tex].
4. Conclusion:
The expressions that are equivalent to [tex]\(-9\left(\frac{2}{3}x + 1\right)\)[/tex] are:
- [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]