College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which expressions are equivalent to [tex]-9\left(\frac{2}{3} x+1\right)[/tex]? Check all that apply.

A. [tex]-9\left(\frac{2}{3} x\right)+9(1)[/tex]

B. [tex]-9\left(\frac{2}{3} x\right)-9(1)[/tex]

C. [tex]-9\left(\frac{2}{3} x\right)+1[/tex]

D. [tex]-6 x+1[/tex]

E. [tex]-6 x+9[/tex]

F. [tex]-6 x-9[/tex]

Answer :

To determine which expressions are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex], we need to simplify the expression by distributing the [tex]\(-9\)[/tex] across the terms inside the parentheses. Here’s how we do it step-by-step:

1. Distribution of [tex]\(-9\)[/tex]:

We have [tex]\(-9\left(\frac{2}{3}x + 1\right)\)[/tex]. We need to distribute [tex]\(-9\)[/tex] to both [tex]\(\frac{2}{3}x\)[/tex] and 1:

- Multiply [tex]\(-9\)[/tex] by [tex]\(\frac{2}{3}x\)[/tex]:
[tex]\[
-9 \times \frac{2}{3}x = -6x
\][/tex]

- Multiply [tex]\(-9\)[/tex] by 1:
[tex]\[
-9 \times 1 = -9
\][/tex]

2. Combine the results:

Combine the distributed terms:
[tex]\[
-6x - 9
\][/tex]

Now let's compare this with the options given to see which are equivalent:

- [tex]\(-9\left(\frac{2}{3} x\right)+9(1)\)[/tex] simplifies to [tex]\(-6x + 9\)[/tex], which is not equivalent.
- [tex]\(-9\left(\frac{2}{3} x\right)-9(1)\)[/tex] simplifies to [tex]\(-6x - 9\)[/tex], which is equivalent.
- [tex]\(-9\left(\frac{2}{3} x\right)+1\)[/tex] simplifies to [tex]\(-6x + 1\)[/tex], which is not equivalent.
- [tex]\(-6x + 1\)[/tex] is not equivalent.
- [tex]\(-6x + 9\)[/tex] is not equivalent.
- [tex]\(-6x - 9\)[/tex] is equivalent.

Therefore, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3} x+1\right)\)[/tex] are:

- [tex]\(-9\left(\frac{2}{3} x\right)-9(1)\)[/tex]
- [tex]\(-6x - 9\)[/tex]