Answer :
To find the mass of the crate, we can use the formula:
[tex]\[ F = m \times a \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
You're given:
- a force ([tex]\( F \)[/tex]) of 200 N,
- an acceleration ([tex]\( a \)[/tex]) of 8 m/s².
We need to find the mass ([tex]\( m \)[/tex]). To do this, rearrange the formula to solve for mass:
[tex]\[ m = \frac{F}{a} \][/tex]
Substitute the given values into the equation:
[tex]\[ m = \frac{200\, \text{N}}{8\, \text{m/s}²} \][/tex]
[tex]\[ m = 25\, \text{kg} \][/tex]
So, the mass of the crate is 25 kg. The correct answer is 25 kg.
[tex]\[ F = m \times a \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
You're given:
- a force ([tex]\( F \)[/tex]) of 200 N,
- an acceleration ([tex]\( a \)[/tex]) of 8 m/s².
We need to find the mass ([tex]\( m \)[/tex]). To do this, rearrange the formula to solve for mass:
[tex]\[ m = \frac{F}{a} \][/tex]
Substitute the given values into the equation:
[tex]\[ m = \frac{200\, \text{N}}{8\, \text{m/s}²} \][/tex]
[tex]\[ m = 25\, \text{kg} \][/tex]
So, the mass of the crate is 25 kg. The correct answer is 25 kg.