Answer :
To solve the problem of finding which expressions are equivalent to [tex]\(-9\left(\frac{2}{3}x + 1\right)\)[/tex], let's break it down step-by-step:
1. Distribute [tex]\(-9\)[/tex] through the parentheses:
The original expression is [tex]\(-9\left(\frac{2}{3}x + 1\right)\)[/tex].
- First, multiply [tex]\(-9\)[/tex] by [tex]\(\frac{2}{3}x\)[/tex]:
[tex]\[
-9 \times \frac{2}{3}x = -6x
\][/tex]
- Next, multiply [tex]\(-9\)[/tex] by [tex]\(1\)[/tex]:
[tex]\[
-9 \times 1 = -9
\][/tex]
2. Combine the results:
So, the expression simplifies to:
[tex]\[
-6x - 9
\][/tex]
Now, let's see which of the given options are equivalent to [tex]\(-6x - 9\)[/tex].
- Option 1: [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex]
Simplifies to [tex]\( -6x + 9\)[/tex]. This is not equivalent to [tex]\(-6x - 9\)[/tex].
- Option 2: [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
Simplifies to [tex]\( -6x - 9\)[/tex]. This matches the simplified expression.
- Option 3: [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex]
Simplifies to [tex]\( -6x + 1\)[/tex]. This is not equivalent to [tex]\(-6x - 9\)[/tex].
- Option 4: [tex]\(-6x + 1\)[/tex]
This is not equivalent to [tex]\(-6x - 9\)[/tex].
- Option 5: [tex]\(-6x + 9\)[/tex]
This is not equivalent to [tex]\(-6x - 9\)[/tex].
- Option 6: [tex]\(-6x - 9\)[/tex]
This is equivalent to the simplified expression.
Therefore, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3}x + 1\right)\)[/tex] are Options 2 and 6: [tex]\(-6x - 9\)[/tex].
1. Distribute [tex]\(-9\)[/tex] through the parentheses:
The original expression is [tex]\(-9\left(\frac{2}{3}x + 1\right)\)[/tex].
- First, multiply [tex]\(-9\)[/tex] by [tex]\(\frac{2}{3}x\)[/tex]:
[tex]\[
-9 \times \frac{2}{3}x = -6x
\][/tex]
- Next, multiply [tex]\(-9\)[/tex] by [tex]\(1\)[/tex]:
[tex]\[
-9 \times 1 = -9
\][/tex]
2. Combine the results:
So, the expression simplifies to:
[tex]\[
-6x - 9
\][/tex]
Now, let's see which of the given options are equivalent to [tex]\(-6x - 9\)[/tex].
- Option 1: [tex]\(-9\left(\frac{2}{3} x\right) + 9(1)\)[/tex]
Simplifies to [tex]\( -6x + 9\)[/tex]. This is not equivalent to [tex]\(-6x - 9\)[/tex].
- Option 2: [tex]\(-9\left(\frac{2}{3} x\right) - 9(1)\)[/tex]
Simplifies to [tex]\( -6x - 9\)[/tex]. This matches the simplified expression.
- Option 3: [tex]\(-9\left(\frac{2}{3} x\right) + 1\)[/tex]
Simplifies to [tex]\( -6x + 1\)[/tex]. This is not equivalent to [tex]\(-6x - 9\)[/tex].
- Option 4: [tex]\(-6x + 1\)[/tex]
This is not equivalent to [tex]\(-6x - 9\)[/tex].
- Option 5: [tex]\(-6x + 9\)[/tex]
This is not equivalent to [tex]\(-6x - 9\)[/tex].
- Option 6: [tex]\(-6x - 9\)[/tex]
This is equivalent to the simplified expression.
Therefore, the expressions that are equivalent to [tex]\(-9\left(\frac{2}{3}x + 1\right)\)[/tex] are Options 2 and 6: [tex]\(-6x - 9\)[/tex].