High School

Karissa begins to solve the equation [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]. Her work is correct and is shown below.

[tex]
\begin{array}{c}
\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4) \\
\frac{1}{2} x-7+11=\frac{1}{2} x-x+4 \\
\frac{1}{2} x+4=-\frac{1}{2} x+4
\end{array}
[/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2} x=-\frac{1}{2} x[/tex] results. What is the value of [tex]x[/tex]?

A. [tex]-1[/tex]
B. [tex]-\frac{1}{2}[/tex]
C. [tex]0[/tex]
D. [tex]\frac{1}{2}[/tex]

Answer :

Sure! Let's go through the solution step-by-step.

We have the equation:

[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
\][/tex]

Step 1: Distribute and simplify both sides.

On the left side:
[tex]\[
\frac{1}{2}(x-14) = \frac{1}{2}x - 7
\][/tex]
So, the left side becomes:
[tex]\[
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x + 4
\][/tex]

On the right side:
[tex]\[
\frac{1}{2}x - (x-4) = \frac{1}{2}x - x + 4
\][/tex]
Simplify to:
[tex]\[
\frac{1}{2}x - x + 4 = -\frac{1}{2}x + 4
\][/tex]

Step 2: The equation now is:

[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

Step 3: Subtract 4 from both sides to isolate the terms involving [tex]\( x \)[/tex]:

[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

Step 4: Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine like terms:

[tex]\[
\frac{1}{2}x + \frac{1}{2}x = 0
\][/tex]

This simplifies to:

[tex]\[
x = 0
\][/tex]

So, the value of [tex]\( x \)[/tex] that satisfies the equation is [tex]\( 0 \)[/tex].