High School

Fill in the missing values below to find the quotient when [tex]$6x^4 + 16x^3 - 19x^2 - 20x + 19$[/tex] is divided by [tex]$-2x^2 + 3$[/tex]. If there is a remainder, express the result in the form [tex]$q(x) + \frac{r(x)}{b(x)}$[/tex].

[tex]\left(6x^4 + 16x^3 - 19x^2 - 20x + 19\right) \div \left(-2x^2 + 3\right) = \square[/tex]

Answer :

Let's perform polynomial division to find the quotient when [tex]\(6x^4 + 16x^3 - 19x^2 - 20x + 19\)[/tex] is divided by [tex]\(-2x^2 + 3\)[/tex]. We'll also manage the remainder, if there is one, and express the result in the form [tex]\(q(x) + \frac{r(x)}{b(x)}\)[/tex].

### Step-by-Step Solution:

1. Setup Division:

Dividend: [tex]\(6x^4 + 16x^3 - 19x^2 - 20x + 19\)[/tex]

Divisor: [tex]\(-2x^2 + 3\)[/tex]

2. Start the Division Process:

- First Term: Divide the first term of the dividend by the first term of the divisor.

[tex]\[
\frac{6x^4}{-2x^2} = -3x^2
\][/tex]

- Multiply the entire divisor by [tex]\(-3x^2\)[/tex] and subtract from the dividend:

[tex]\[
(-3x^2)(-2x^2 + 3) = 6x^4 - 9x^2
\][/tex]

Subtract:

[tex]\[
(6x^4 + 16x^3 - 19x^2) - (6x^4 - 9x^2) = 16x^3 - 10x^2
\][/tex]

3. Repeat the Process:

- Second Term: Divide the first term of the new dividend by the first term of the divisor.

[tex]\[
\frac{16x^3}{-2x^2} = -8x
\][/tex]

- Multiply and subtract:

[tex]\[
(-8x)(-2x^2 + 3) = 16x^3 - 24x
\][/tex]

Subtract:

[tex]\[
(16x^3 - 10x^2 - 20x) - (16x^3 - 24x) = -10x^2 + 4x
\][/tex]

4. Continue the Process:

- Third Term: Divide the first term of the new dividend by the first term of the divisor:

[tex]\[
\frac{-10x^2}{-2x^2} = 5
\][/tex]

- Multiply and subtract:

[tex]\[
(5)(-2x^2 + 3) = -10x^2 + 15
\][/tex]

Subtract:

[tex]\[
(-10x^2 + 4x + 19) - (-10x^2 + 15) = 4x + 4
\][/tex]

5. Calculating Remainder:

- At this point, [tex]\(4x + 4\)[/tex] is of lower degree than the divisor [tex]\(-2x^2 + 3\)[/tex], so it's the remainder.

### Final Result:

The quotient [tex]\(q(x)\)[/tex] is [tex]\(-3x^2 - 8x + 5\)[/tex], and the remainder [tex]\(r(x)\)[/tex] is [tex]\(4x + 4\)[/tex].

Expressing the result in the requested form:

[tex]\[
q(x) + \frac{r(x)}{b(x)} = -3x^2 - 8x + 5 + \frac{4x + 4}{-2x^2 + 3}
\][/tex]

This gives us the complete solution to the division problem!