Middle School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Which expression is equivalent to [tex] \sqrt[3]{27x^{18}}[/tex]?

A. [tex] 3x^{3} [/tex]

B. [tex] 3x^{6} [/tex]

C. [tex] 9x^{3} [/tex]

D. [tex] 9x^{6} [/tex]

Answer :

Answer:

Option (b) is correct.

The Equivalent expression to given expression [tex]\sqrt[3]{27x^{18}}[/tex] is [tex]3x^6[/tex]

Step-by-step explanation:

Given : Expression [tex]\sqrt[3]{27x^{18}}[/tex]

We have to choose an equivalent expression to the given expression [tex]\sqrt[3]{27x^{18}}[/tex]

Consider the given expression [tex]\sqrt[3]{27x^{18}}[/tex]

Can be written as [tex]\left(27x^{18}\right)^{\frac{1}{3}}[/tex]

Apply exponent rule [tex]\left(a\cdot \:b\right)^n=a^nb^n[/tex]

We have,

[tex]=27^{\frac{1}{3}}\left(x^{18}\right)^{\frac{1}{3}}[/tex]

Factor 27 as [tex]\:27=3^3[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}[/tex]

we have,

[tex]\left(3^3\right)^{\frac{1}{3}}=3^{3\cdot \frac{1}{3}}=3[/tex]

Also, For [tex]\left(x^{18}\right)^{\frac{1}{3}}[/tex]

[tex]\mathrm{Apply\:exponent\:rule:\:}\left(a^b\right)^c=a^{bc},\:\quad \mathrm{\:assuming\:}a\ge 0[/tex]

[tex]=x^6[/tex]

Thus, [tex]\left(27x^{18}\right)^{\frac{1}{3}}=3x^6[/tex]

Thus, The Equivalent expression to given expression [tex]\sqrt[3]{27x^{18}}[/tex] is [tex]3x^6[/tex]

∛27x^18 =
=∛(3x^6)^3
= 3x^6

answer
B. 3x^6