High School

Which expression is equal to [tex]$(3x-5)(2x-7)$[/tex]?

A. [tex]6x^2 + 31x - 35[/tex]
B. [tex]6x^2 - 31x - 12[/tex]
C. [tex]5x^2 - 21x + 12[/tex]
D. [tex]6x^2 - 31x + 35[/tex]

Answer :

To determine which expression is equal to [tex]\((3x-5)(2x-7)\)[/tex], let's expand the expression step-by-step.

We will use the distributive property, also known as the FOIL method (First, Outer, Inner, Last), to expand the expression:

1. First: Multiply the first terms in each binomial:
[tex]\(3x \times 2x = 6x^2\)[/tex].

2. Outer: Multiply the outer terms in the binomials:
[tex]\(3x \times -7 = -21x\)[/tex].

3. Inner: Multiply the inner terms in the binomials:
[tex]\(-5 \times 2x = -10x\)[/tex].

4. Last: Multiply the last terms in each binomial:
[tex]\(-5 \times -7 = 35\)[/tex].

Now, combine all these results into a single expression:
[tex]\[6x^2 - 21x - 10x + 35\][/tex]

Next, combine the like terms:
[tex]\[-21x - 10x = -31x\][/tex]

So, the expanded expression is:
[tex]\[6x^2 - 31x + 35\][/tex]

Let's match this with the given options:

- [tex]\(6x^2 + 31x - 35\)[/tex]
- [tex]\(6x^2 - 31x - 12\)[/tex]
- [tex]\(5x^2 - 21x + 12\)[/tex]
- [tex]\(6x^2 - 31x + 35\)[/tex]

The correct expression that matches is [tex]\(6x^2 - 31x + 35\)[/tex], so the correct choice is the fourth option.

Therefore, [tex]\((3x-5)(2x-7)\)[/tex] is equal to [tex]\(6x^2 - 31x + 35\)[/tex].