College

Simplify:

[tex]14 x^5\left(13 x^2+13 x^5\right)[/tex]

A. [tex]27 x^{10}+27 x^{25}[/tex]

B. [tex]182 x^{10}+13 x^5[/tex]

C. [tex]182 x^7+182 x^{10}[/tex]

D. [tex]27 x^7+27 x^{10}[/tex]

Answer :

To simplify the expression [tex]\(14x^5(13x^2 + 13x^5)\)[/tex], follow these steps:

1. Distribute [tex]\(14x^5\)[/tex] to each term inside the parentheses:

- First, distribute [tex]\(14x^5\)[/tex] to [tex]\(13x^2\)[/tex]:
[tex]\[
14x^5 \times 13x^2 = (14 \times 13) \times x^{5+2} = 182x^7
\][/tex]

- Next, distribute [tex]\(14x^5\)[/tex] to [tex]\(13x^5\)[/tex]:
[tex]\[
14x^5 \times 13x^5 = (14 \times 13) \times x^{5+5} = 182x^{10}
\][/tex]

2. Combine the results:
The expression simplifies to:
[tex]\[
182x^7 + 182x^{10}
\][/tex]

Therefore, the simplified expression is [tex]\(182x^7 + 182x^{10}\)[/tex].

The correct option is:

c. [tex]\(182x^7 + 182x^{10}\)[/tex]