Answer :
To simplify the expression [tex]\(14x^5(13x^2 + 13x^5)\)[/tex], follow these steps:
1. Distribute [tex]\(14x^5\)[/tex] to each term inside the parentheses:
- First, distribute [tex]\(14x^5\)[/tex] to [tex]\(13x^2\)[/tex]:
[tex]\[
14x^5 \times 13x^2 = (14 \times 13) \times x^{5+2} = 182x^7
\][/tex]
- Next, distribute [tex]\(14x^5\)[/tex] to [tex]\(13x^5\)[/tex]:
[tex]\[
14x^5 \times 13x^5 = (14 \times 13) \times x^{5+5} = 182x^{10}
\][/tex]
2. Combine the results:
The expression simplifies to:
[tex]\[
182x^7 + 182x^{10}
\][/tex]
Therefore, the simplified expression is [tex]\(182x^7 + 182x^{10}\)[/tex].
The correct option is:
c. [tex]\(182x^7 + 182x^{10}\)[/tex]
1. Distribute [tex]\(14x^5\)[/tex] to each term inside the parentheses:
- First, distribute [tex]\(14x^5\)[/tex] to [tex]\(13x^2\)[/tex]:
[tex]\[
14x^5 \times 13x^2 = (14 \times 13) \times x^{5+2} = 182x^7
\][/tex]
- Next, distribute [tex]\(14x^5\)[/tex] to [tex]\(13x^5\)[/tex]:
[tex]\[
14x^5 \times 13x^5 = (14 \times 13) \times x^{5+5} = 182x^{10}
\][/tex]
2. Combine the results:
The expression simplifies to:
[tex]\[
182x^7 + 182x^{10}
\][/tex]
Therefore, the simplified expression is [tex]\(182x^7 + 182x^{10}\)[/tex].
The correct option is:
c. [tex]\(182x^7 + 182x^{10}\)[/tex]