High School

Which cards are equivalent to [tex]$3 \frac{2}{5} - 1 \frac{4}{6}$[/tex]? Choose ALL the correct answers.

A. [tex]3 \frac{2}{30} - 1 \frac{4}{30}[/tex]
B. [tex]3 \frac{12}{30} - 1 \frac{20}{30}[/tex]
C. [tex]3 \frac{10}{30} - 1 \frac{24}{30}[/tex]
D. [tex]1 \frac{16}{30}[/tex]
E. [tex]1 \frac{22}{30}[/tex]
F. [tex]1 \frac{28}{30}[/tex]

Answer :

To solve the problem of finding which cards are equivalent to [tex]\(3 \frac{2}{5} - 1 \frac{4}{6}\)[/tex], let's go through the solution step by step:

1. Convert Mixed Numbers to Improper Fractions:

- [tex]\(3 \frac{2}{5}\)[/tex] can be written as an improper fraction:
- Multiply the whole number by the denominator and add the numerator:
[tex]\[
3 \frac{2}{5} = \frac{3 \times 5 + 2}{5} = \frac{15 + 2}{5} = \frac{17}{5}
\][/tex]

- [tex]\(1 \frac{4}{6}\)[/tex] can be simplified first:
- The fraction [tex]\(\frac{4}{6}\)[/tex] simplifies to [tex]\(\frac{2}{3}\)[/tex].
- Convert the mixed number to an improper fraction:
[tex]\[
1 \frac{4}{6} = 1 \frac{2}{3} = \frac{1 \times 3 + 2}{3} = \frac{3 + 2}{3} = \frac{5}{3}
\][/tex]

2. Find a Common Denominator:

- To subtract these fractions, convert them to have a common denominator. The least common denominator between 5 and 3 is 15.

- Convert [tex]\(\frac{17}{5}\)[/tex] to an equivalent fraction with a denominator of 15:
[tex]\[
\frac{17}{5} = \frac{17 \times 3}{5 \times 3} = \frac{51}{15}
\][/tex]

- Convert [tex]\(\frac{5}{3}\)[/tex] to an equivalent fraction with a denominator of 15:
[tex]\[
\frac{5}{3} = \frac{5 \times 5}{3 \times 5} = \frac{25}{15}
\][/tex]

3. Subtract the Fractions:

Now we subtract the two fractions:
[tex]\[
\frac{51}{15} - \frac{25}{15} = \frac{51 - 25}{15} = \frac{26}{15}
\][/tex]

4. Convert the Result to a Mixed Number:

Divide the numerator by the denominator to get a mixed number:
[tex]\[
\frac{26}{15} = 1 \frac{11}{15}
\][/tex]

5. Identify Equivalent Cards:

We need to find the card expressing the same value as [tex]\(1 \frac{11}{15}\)[/tex] using a denominator of 30, since that's used in the cards:

- Convert [tex]\(1 \frac{11}{15}\)[/tex] to a fraction with denominator 30:
- Multiply the numerator and denominator by 2:
[tex]\[
1 \frac{11}{15} = 1 + \frac{11 \times 2}{15 \times 2} = 1 \frac{22}{30}
\][/tex]

Therefore, the card equivalent to [tex]\(1 \frac{11}{15}\)[/tex] is:

- [tex]\(1 \frac{22}{30}\)[/tex]

The correct equivalent card from the options is [tex]\(1 \frac{22}{30}\)[/tex].