High School

What is the value of [tex]f(-x) - f(x)[/tex] for the function [tex]f(x) = x^3 + x + 7[/tex]?

A. [tex]-2x^3 - 7[/tex]
B. [tex]0[/tex]
C. [tex]2x^3 + 7[/tex]
D. [tex]2x^3 + 2x + 14[/tex]

Answer :

Final answer:

The value of f(-x) - f(x) for the function f(x) = x^3 + x + 7 should be -2x^3 - 2x. The correct answer is e) -2x^3 - 2x.

Explanation:

The value of f(-x) - f(x) for the function f(x) = x^3 + x + 7 is found by substituting -x into the function, then subtracting f(x) from the result. First, we calculate f(-x):

f(-x) = (-x)^3 + (-x) + 7 = -x^3 - x + 7

Now, we subtract f(x) from f(-x):

f(-x) - f(x) = (-x^3 - x + 7) - (x^3 + x + 7)

This simplifies to:

f(-x) - f(x) = -x^3 - x + 7 - x^3 - x - 7

Which further simplifies to:

f(-x) - f(x) = -2x^3 - 2x

The correct answer based on the function f(x) = x^3 + x + 7 should be e) -2x^3 - 2x.

The incomplete question:

What is the value of f(-x) - f(x) for the function f(x) = x³+ x + 7?

a) -2x³ - 7

b) 0

c) 2x³ + 7

d) 2x³ + 2x + 14

e) -2x^3 - 2x.