College

What is the product?

[tex]\left(-2x - 9y^2\right)(-4x - 3)[/tex]

A. [tex]-8x^2 - 6x - 36xy^2 - 27y^2[/tex]

B. [tex]-14x^2 - 36xy^2 + 27y^2[/tex]

C. [tex]8x^2 + 6x + 36xy^2 + 27y^2[/tex]

D. [tex]14x^2 + 36xy^2 + 27y^2[/tex]

Answer :

To find the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex], we will use the distributive property, which involves distributing each term in the first polynomial to each term in the second polynomial.

Let's break it down step-by-step:

1. Distribute the [tex]\(-2x\)[/tex] term:
- Multiply [tex]\(-2x\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\((-2x) \times (-4x) = 8x^2\)[/tex]
- Multiply [tex]\(-2x\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\((-2x) \times (-3) = 6x\)[/tex]

2. Distribute the [tex]\(-9y^2\)[/tex] term:
- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-4x\)[/tex]:
[tex]\((-9y^2) \times (-4x) = 36xy^2\)[/tex]
- Multiply [tex]\(-9y^2\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\((-9y^2) \times (-3) = 27y^2\)[/tex]

3. Combine all the results:
- [tex]\[8x^2 + 6x + 36xy^2 + 27y^2\][/tex]

Therefore, after distributing and combining all the terms, the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex] is:

[tex]\[8x^2 + 6x + 36xy^2 + 27y^2\][/tex]

So, the correct option is:

[tex]\[8x^2 + 6x + 36xy^2 + 27y^2\][/tex]