College

What is the product?

[tex]
\[
(7x^2)(2x^3 + 5)(x^2 - 4x - 9)
\]
[/tex]

A. [tex]\(14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45\)[/tex]

B. [tex]\(14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2\)[/tex]

C. [tex]\(14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2\)[/tex]

D. [tex]\(14x^{12} - 182x^6 + 35x^4 - 455x^2\)[/tex]

Answer :

To find the product of the expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], we will follow a detailed step-by-step process.

1. Multiply the First Two Parts:

Start with the expression [tex]\((7x^2)(2x^3 + 5)\)[/tex].

- Distribute [tex]\(7x^2\)[/tex] across each term inside the parentheses:

[tex]\[
7x^2 \times 2x^3 = 14x^5
\][/tex]

[tex]\[
7x^2 \times 5 = 35x^2
\][/tex]

So, the result of the first multiplication is:

[tex]\[
14x^5 + 35x^2
\][/tex]

2. Now Multiply the Result with the Third Part:

Now we will multiply the intermediate result [tex]\((14x^5 + 35x^2)\)[/tex] with the third part [tex]\((x^2 - 4x - 9)\)[/tex].

Distribute each term from the first polynomial across each term in the second polynomial:

- Multiply [tex]\(14x^5\)[/tex] with each term in [tex]\((x^2 - 4x - 9)\)[/tex]:

[tex]\[
14x^5 \times x^2 = 14x^7
\][/tex]

[tex]\[
14x^5 \times (-4x) = -56x^6
\][/tex]

[tex]\[
14x^5 \times (-9) = -126x^5
\][/tex]

- Multiply [tex]\(35x^2\)[/tex] with each term in [tex]\((x^2 - 4x - 9)\)[/tex]:

[tex]\[
35x^2 \times x^2 = 35x^4
\][/tex]

[tex]\[
35x^2 \times (-4x) = -140x^3
\][/tex]

[tex]\[
35x^2 \times (-9) = -315x^2
\][/tex]

3. Combine All the Terms:

Now, add all the terms together:

[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

This gives us the final expanded product of the expression.

The resulting polynomial is:

[tex]\[ 14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2 \][/tex]

This is the answer to the original question.