College

What is the product?

[tex]\[ (-2x - 9y^2)(-4x - 3) \][/tex]

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

To find the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex], we will use the distributive property. This involves multiplying each term in the first expression by each term in the second expression. Let's go through this step-by-step:

1. Multiply the term [tex]\(-2x\)[/tex] by each term in [tex]\((-4x - 3)\)[/tex]:
- [tex]\(-2x \cdot -4x = 8x^2\)[/tex]
- [tex]\(-2x \cdot -3 = 6x\)[/tex]

2. Multiply the term [tex]\(-9y^2\)[/tex] by each term in [tex]\((-4x - 3)\)[/tex]:
- [tex]\(-9y^2 \cdot -4x = 36xy^2\)[/tex]
- [tex]\(-9y^2 \cdot -3 = 27y^2\)[/tex]

Now, combine all the resulting terms:

- [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

This means the product of [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex] is:

[tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

Thus, the correct answer is:

[tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]