College

What is the product of the following expression?

[tex]\[

(7x^2)(2x^3+5)(x^2-4x-9)

\][/tex]

A. [tex]\(14x^5 - x^4 - 46x^3 - 58x^2 - 20x - 45\)[/tex]

B. [tex]\(14x^6 - 56x^5 - 91x^4 - 140x^3 - 315x^2\)[/tex]

C. [tex]\(14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2\)[/tex]

D. [tex]\(14x^{12} - 182x^6 + 35x^4 - 455x^2\)[/tex]

Answer :

To find the product of the expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex], follow these steps:

1. Multiply the constants and the powers of [tex]\(x\)[/tex]:

Begin by multiplying the first term [tex]\(7x^2\)[/tex] with the polynomial [tex]\((2x^3 + 5)\)[/tex].

[tex]\[
7x^2 \cdot (2x^3 + 5) = 7x^2 \cdot 2x^3 + 7x^2 \cdot 5
\][/tex]

[tex]\[
= 14x^5 + 35x^2
\][/tex]

2. Multiply the result with the remaining polynomial:

Now, take the result from step 1, [tex]\((14x^5 + 35x^2)\)[/tex], and multiply it with [tex]\((x^2 - 4x - 9)\)[/tex].

[tex]\[
(14x^5 + 35x^2) \cdot (x^2 - 4x - 9)
\][/tex]

Distribute both terms across each term in the second polynomial:

For [tex]\(14x^5\)[/tex]:

- [tex]\(14x^5 \cdot x^2 = 14x^7\)[/tex]
- [tex]\(14x^5 \cdot (-4x) = -56x^6\)[/tex]
- [tex]\(14x^5 \cdot (-9) = -126x^5\)[/tex]

For [tex]\(35x^2\)[/tex]:

- [tex]\(35x^2 \cdot x^2 = 35x^4\)[/tex]
- [tex]\(35x^2 \cdot (-4x) = -140x^3\)[/tex]
- [tex]\(35x^2 \cdot (-9) = -315x^2\)[/tex]

3. Combine all the terms:

Add all the terms together:

[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

4. Final Simplified Expression:

After combining, your final expression is:
[tex]\[
14x^7 - 56x^6 - 126x^5 + 35x^4 - 140x^3 - 315x^2
\][/tex]

This is the product of the given expression [tex]\((7x^2)(2x^3 + 5)(x^2 - 4x - 9)\)[/tex].