High School

What is the product of the expression?

[tex]
\[
(-2x - 9y^2)(-4x - 3)
\]
[/tex]

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

To find the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex], we will use the distributive property, which involves multiplying each term in the first parenthesis by each term in the second parenthesis.

Let's break it down step-by-step:

1. Multiply the first terms:
[tex]\[
(-2x) \cdot (-4x) = 8x^2
\][/tex]
This is because multiplying two negative numbers gives a positive product.

2. Multiply the outer terms:
[tex]\[
(-2x) \cdot (-3) = 6x
\][/tex]
Again, both numbers are negative, resulting in a positive product.

3. Multiply the inner terms:
[tex]\[
(-9y^2) \cdot (-4x) = 36xy^2
\][/tex]
The negative sign on both numbers gives a positive product.

4. Multiply the last terms:
[tex]\[
(-9y^2) \cdot (-3) = 27y^2
\][/tex]
This gives a positive result for the same reason.

Now, combine all the products obtained:

[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

Therefore, the product of the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex] is:

[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

Comparing this result with the options given in the question:

- The expression matches the option [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex].

Hence, the correct answer is:
[tex]\[ \boxed{8x^2 + 6x + 36xy^2 + 27y^2} \][/tex]